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CHAPTER 1

|dris ZFE

RN Idris HIBAE, ERBENE T WA Idris EERE . CRPEE TIZESRORE, R
ERBDORE TR REES . W Haskell 2 OCaml -

HEME:  Idris OO % BIERA CCo HFaIthill & fi - FILRIEEEME, Idris #HX SHF
Idris SCRSHIBTE R A B SR AR 52 AR -

KT CCo MHEZ{EE S W: https://creativecommons.org/publicdomain /zero /1.0 /deed.zh

1.1 3|5

EEGRERES T, XH 5 8 2 WERRIK S . FH7E Haskell 1, F LRI 5 05 AR
A . FRFIR DR EIFIE:

e Int, Char, [Char], [al
SRR, X EE 5 AN EaR R AR5 -
e 42, a’ , "Hello world!", [2,3,4,5,6]

IR, EHHE KBIEE (Dependent Type) HIESH, EATRXFIFHAHEE . KL pFRR
[fHf | FME, Hangin, KME —% (First-Class) WIESME, HIE A LURE—FEHTERME -
PETE BRI E R Vect n a, Hb a ATLEMRE, M o HIZFIEHKE BT LUEE
¥,

MREE THAEERME (WPEROKE) B, ElefdEig SR T - nEEm 7
KEERIE, BHEMER: SGRINEMNKENRIMEATIRAKEZ . FEEATTLN app REWLT
WRERRE, EHTERERE (Vector) :

app : Vect n a -> Vect m a -> Vect (n + m) a

U iirer & NER, BIERBERMER B S % IRE [ (Vector) | -
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AREAREAE T Idris, — il AR R BN HAEIE S - Idris T H &40 ATk A8 g e T 18—
MEIEERAES - vit, Idris BOSOTRL T RIFRIE S, AET ARSI HTE . EiliiE
HERIMNRREER D, ATSSMNE ¢ FERIAZE

1.1.1 HFRZAX

RHGEE M CEREREEIES (W0 Haskell 36 OCaml ) W%, SEHEMNFZIES . RERE
B = G ARSI S Haskell FIEVE - BATRBSORE B BT KBER IR R S
FNFEE RS

X Idris EANRARINAE, W Edwin Brady fr&f) (Idris RAUNENIT %) , HAEEESL, Wik
HARRFITAZ UK E L HIFT o AR Manning) FREL -

1.1.2 RHEIREE

AHRE P HIR B T Idris 9PN - SXEESCHRATHE Idris ZATHRH samples HSRAFIKE], FlLME
FTVRRAEREAT - 281, BT EAZ RSN, W%k AT .

1.2 ATl]

1.2.1 FiEFK

TEZSE 1dris ZHI, RFREFRIAESHEELAREM LR . /RFE:
o ITHARRCARRY GHC - H A A B 7.10.3.
« GNU ZHEZEHEE (GMP) 7J M MacPorts/Homebrew FI1FTH FEH Linux & 1T IR -

1.2.2 T#HHZE

GRRARIH R BT AR R, A4 2 1dris HOETR T AR a1 THIA:

cabal update; cabal install idris

X% %3 Hackage HEISFOHTRAS XEFTE (K80 - ANRIRABZRGHIT A RREIE, 7T AFE |GitHub 3R]
T, WEREWRERESRLE

WRARZ BN R Z T Cabal FIZRTYE, Idris AIEEANFEVRE) PATH 1o 405R Idris AJHUAT XM
TEHE], 1ERF ~/.cabal/bin HNINE] $PATH MM EH - Mac OS X FH P FZERM ~/Library/
Haskell/bin, Windows il % & &I Cabal 27 %3 1E 4HOMEY\AppData\Roaming\cabal\bin
A

NTRELERERY), REEREE—IEF - H0E—1%HN hello.idr B3, HPEELT
UK

module Main

main : I0 O
main = putStrLn "Hello world"

1.2. Al 3
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WRIRTE Haskell, FPSRIEEXBREFEMM 2, ZWOAMEA); WRIRSTEEIFEE, BIHES
VEM MRS o /R LIE G 21T I\ idris hello.idr -o hello JEBFREFESRiEM AT T M. X2
BIE#E— 127 hello KIRIHUTIH:, RAILLEITE:

$ idris hello.idr -o hello

$ ./hello
Hello world

HER, EUMFS $ RnmfT. NHE AR Idris 717585
« -0 prog HIFEMLN prog AT HUATIH: -
o —-check LA A EMEHLXT SIS EARBUE TR E -
o —-package pkg RFELAININKEN, FlUNiE --package contrib RfHH contrib £ -

--help W VAT ZEA A 4T85 -

1.2.3 XEHEAIME

FEaLTHEA idris RFHL AT . IREBEIMTAE

$ idris

/I )

/1 __ // / Version 1.3.1

WAV AV VAV AV G| http://www.idris-lang.org/
[__IN__s /] Type :7 for help
Idris>

EaiRMt—1 ghci KARAIFE, AT LURRBICEIFERERAR - HITEHIER - JaiF - JwtE. LK
PUTZMPEERE. 7S 7 RFIHITFFm S - ELUTRHIF, hello.idr CHINE, main KK
BCETRE, ZEHRRFRRFER T ATHUTH hello. TEXRFIHFRAVGAER, @D, #hoflE
%%2?%@%$($%¢%hdhim>u%ﬂiﬁmwﬁﬁﬁoEﬁY#W@ﬁZE,?%ﬂ%
B -

$ idris hello.idr

/1 ) ___/ Version 1.3.1
S/ 7 ) http://www.idris-lang.org/
[___IN__,_ /) /_/____/ Type :? for help

Type checking ./hello.idr
*hello> :t main
Main.main : I0 ()

*hello> :c hello

xhello> :q

Bye bye

$ ./hello

Hello world

1.3 RAGKRE

1.3. RA5KH 4
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1.3.1 JRiERH

Idris 7€ X T —2EJF3E (Primitive) 2%. Int. Integer F Double HT#UERA!, Char 1 String H
TOORBRIE, Por MIFTRINERIEE - FEAPEE T —SHERA, B Bool XHAH True 7l False-
FATAT U X LR RO R & - FFLUN AR R EI M Prims.idr H, @ LITHHEA idris
Prims.idr DLRFEINEE Idris A58 IR

module Prims

: Int
= 42

foo : String

foo = "Sausage machine"
bar : Char
bar = 'Z'

quux : Bool
quux = False

®os: JF1E (Primitive) ARE AR EIREAMIE, FIERR A REARHRE .

Idris XHEE—DALHERERFERR (W4bH module Prims) , —PANERISASER, —HFEPELKEE X
TR - FEARBIFHARTEE ST A - Idris ATHZ MESRM AL, S PERF SN EEBEEBCHmES
[] - JX‘H%\E SIS a4 23 (B[ (éat 29) —TTHIH—PITIE . FERE Idris FEFPES, A BRI A0 4E 2R T
REE . RECRIEE KAV 5EE LHEFH, ﬂﬁ%X%ﬁZ"ﬁﬁ%iFﬂ% Flanz @iz KA x @ Int
# foo : String. P AMMEIHEA LIS Z BIRIFEBAER . B4, 25 ; WA HTERAH -

JERRIR Prelude ZFERET Idris BFH HBISA, G 10 TEE, BAZE, KRG LS MM E
A. Prelude 58 ST —EEARMEGEELRF,  HA TR DERORT P EREN] . ERRT R T RES
I ERIHRE - i

*prims> 6*6+6

42 : Integer

*prims> x == 6*%6+6
True : Bool

Idris A JFIERALE LT P rE Lﬁﬂﬁﬂthﬁiﬁ Al N TE*X #T’%&?f“%uiﬁ)ﬂ?

FPE SRR, XERATSTE O] (éat 21) — T HITE - ﬁlﬁmi(% KAl IE .then...else 14
R, FI:

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"

"The answer!" : String

1.3.2 Fms

Ha R AR E T AETR S Haskell EFAEEL. B0, BREANFIFRAIE AT

data Nat =7 | S Nat -— HRE (E5)E4%)

data List a = Nil | (::) a (List a) —- Z&FF#

DI BB B FhREE . — i HBRBELNE (2) ., BE2RER -1 BREHER (s k) ; FFE
HoRhZE (Nil) %Z?Jtz%—/l\@%&%bu?f%—/WJEEZEU (x :: xs) o fF List FIERAF . Ff]
AT HRERIER o BXHERFHRIER LEN 2 FF B (Fixity Declaration) SEANIN, @0 FFiR:

1.3. RA5KH 5
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infixr 10 ::

BA - B 5 SR T S PR M R BRI o E MR TESE SRR AT R AT
A, B o). PEHRERT A R RS

ch—k\ /=, 7 | &>< 13" ~#

HE D XERFSHBEMBEIEFLTIEHRATE L B2 v => > <=y = 7= |« *xs
==> N\ % 7 B L

1.3.3 EH

PREGE T ZCUCE (Pattern Matching) SEER, 1BVERIFER Haskell K. HEZFAFRET Idris 1Y
P R R 2R AR, AR EHSAES © (MIE Haskell FIES :: ) - BAREEIELEZHE K
BUELAN, FIFER AR

-- —EHIINIE

plus : Nat -> Nat -> Nat
plus Z y=3

plus (S k) y = S (plus k y)

-- — bR

mult : Nat -> Nat -> Nat

mult Z y=12

mult (S k) y = plus y (mult k y)

PERAZERT + M« FIFERTE Nat FIFRZAT TEHEE, TIEH EEAREORE L - 7 Haskell
AFRRGE, REMEELEFEHF LR NGRS - KEE (FIEH plus M mult ) , BIEtES
(-8~ Ni1 I ::) DANMRAIGIESS (Nat M List) BIBFR—mZ <A NI EAE, BRI
PG AR I 2 Al AR E FEET K « FATAT LR Tdris SRR Filalix 22 e £

Idris> plus (S (S Z)) (8 (S 2))

4 : Nat

Idris> mult (S (S (S 2))) (plus (S (S 2)) (8 (S 2)))
12 : Nat

EE: EER—1 Nat TTE, W (S (S (S (5 2)))) B, Idris ZHHEE/RHN 4. plus (S (S 2))
(S (8 2)) BEEHREFREHR (S (S (S (S 2)))), BENERE 4. X SW7E Idris R FFHISIE:

Idris> (S (S (S (S Z))))
4 . Nat

MEADRE—F, BT EENESEOES, FHIITHAER T it s £

Idris> plus 2 2

4 : Nat

Idris> mult 3 (plus 2 2)
12 : Nat

RATRERRIFEY, BEMTRANEAEERNE T BEGEE, RV IEFRE—SEHH) BREY EERR
WAET —HEHERR S IEFETHER, mMASHSHEHIREWEILRKR, BINZEMaEE . REW
B, A IH AR B LR UM IR XM S - 2z, Idris FIE Nat  (DLRRRISSH LK
) MECZRECR, SXEWE Idris A AL ENTRFRUEZA plus Al mult XA EREL -

1.3. RA5KH 6
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where W]

BB AT IES where MAISR JRER HUE S - B0, ZLRE SUHMRSAELSIRATREL,  FoAITAT LAGE FH i B R L
HKENHH), RERERSIER, FRELFRRFN:

reverse : List a -> List a
reverse xs = revAcc [] xs where
revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xXs

UEitE T BEH), where SRAREHIMEIE R IR HLINZ BRECE LR «

M ERE

EISNETERBR AT, HiE WEHE US4 T, 7 where NATFHH AT GXEK) xs TEHTE
MT) o HEENBFRENRIN S (Parameter) | IFA(CE BAERE D HIIN A S7E vhere M
AIRIVERSE, B, EAEEARLER AR E E ALY -

PREGELST, where SR AL & RHREAEA B, LIN U HIAY MyLT BUTCIRAE foo HITE SLZIMITIH] -

foo : Int -> Int
foo x = case isLT of
Yes => x*2
No => x*4
where
data MyLT = Yes | No

isLT : MyLT
isLT = if x < 20 then Yes else No

B, where MAIHE LHIREMECTZ R —H, HFZXAFE - IR, K% £ AT A
LU DL

o £ HIAETVRE LA A
o £ WIRAESE 2T LOsE H & R AR E
I, 2Bk, DU E SR A AR

even : Nat -> Bool

even Z = True

even (S k) = odd k where
odd Z = False
odd (S k) = even k

test : List Nat
test = [c (S8 1), c Z, d (S 2)]
where ¢ x = 42 + x
dy=c@+1+zy
where z w =y + w

bt

Idris FEFFH AT LUIZ BT (Hole) SEFRRAKRFEAIE S - Biltn, FATATLAZE [Hello world | &7 H (A
ﬁ%ﬁ% greeting %E**ﬁ\bi:

1.3. RA5KH 7
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main : I0 O
main = putStrLn 7greeting

% 7greeting 12 7 ML, ERFEFFHATENE S - XRDERDN Idris BT, /R URSE
greeting 2T

*Hello> :t greeting

greeting : String

RAEVIRRAEE & BoRERETIrEZEMNER - fli, 4E—PMRZEMD even E XL

even : Nat -> Bool
even Z = True
even (S k) = 7even_rhs

HATAT LIS A even_rhs HIRTY, BHEMBEANREIRA, LIKZR k FIRM.

*Even> :t even_rhs
k : Nat

YRR AN, FOVERHBIEA] ZPH a5 mE- FATEF KRG EBE D RE, M2 N L R%w
GHUERSY, ik Idris EIFHA TR SEACEE S -

#R: lhs (left hand side) 5 rhs (right hand side) #HIFEREXFESHILDFAD, BIARFA
o

1.3.4 {KEFETY
—EER T

£ Idris 1, REZE—% (First-Class) #, RVENTA LG CHIESHEIFEPOTEMBRIE  (DURLE
HERED - B, BATATLUGR S — DA B R R R AL

isSingleton : Bool -> Type
isSingleton True = Nat
isSingleton False = List Nat

ZRREAT N — Bool [HITH MG A IR, Fi/RERRERIESRH—DHEH (Singleton) - FA1AT
DAFEAE T RERS 8 A SR 7 FZ R BT B — DR - e, BRI T EaR EERE.

mkSingle : (x : Bool) -> isSingleton x
mkSingle True = 0
mkSingle False = []

EHWFHHERNFEREARE . DU REEEBITE Nat FIRZF, S IREIAER Nat, SXBURT SR

1€ single &7 True:

sum : (single : Bool) -> isSingleton single -> Nat
sum True x = x

sum False [] = 0

sum False (x :: xs) = x + sum False xs

1.3. RA5KH 8
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I

ben

AT — D2 [HFREMNIIR] B, ERBEBACES, TEREWERIERNZR
(Vector) - M=EAIEN Idris FERI—HEB4, FliEIT S A Data.Vect RfEH, HARFATH B CFH
E:
data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a->Vect k a -> Vect (S k) a

ERBNEM 75 List MRINWIERS . REATEREARMGAZEN  (FEXEF, EEENF
HIREERA ) Idris BREEREZBOXFERIAF R (ad-hoc) ZEE . HIELSCHIHIE 854 PRI B Al ARYE £ F X
RS R -

XEFEIT —RAE (Type Family) , %5 BHES 2 B R B B AR —FE . BATE
TR T KRB HESS Vect HURAL, BHEEZ— Nat MI—DRIEWERSE, Hi Type FREAIMIRTA .
FATH Vet BT Nat 3K KE|, 4 Type ZHUL - B IMESRESEZRAKENARF S - Nil
HEEHFHEZKENME, M ATWEESKENmE. £ 0 (RS BIMNEMEET—
NREN a ITTEM—TEIN Vect k a MEH (Tai) (BIKER x FIRE) , —FHWRT MK
Eh s k A&

[ List DLK Nat iXEME BRI —FE, AT LUBT A ITELARIER T 20h Vet iXFERRIIR T &
M ek% - TERT vect HIRERIRBIREMHIA TS XM R E S MR . Flan, THEE LK ++ H
ﬂ:‘@%ﬁ/l\ Vect:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) Nil ys = ys
(#+) (x :: x8) ys = X :: XS ++ ys

(++) BRBIFER T EER A ERKELINEA R RERKEZ - WRFATIEM TR H T HIRE
SUEHEARSL, A2 Idris BEASHEZAZE L Flan:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(+#+) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs —— Hix

AW Idris REREROER, EXAHLINEER

$ idris VBroken.idr --check

VBroken.idr:9:23-25:

When checking right hand side of Vect.++ with expected type
Vect (Sk +m a

When checking an application of constructor Vect.:::
Type mismatch between
Vect (k + k) a (Type of xs ++ xs)

and
Vect (plus k m) a (Expected type)
Specifically:
Type mismatch between
plus k k
and
plus k m

ZERERIEER T HENKERLE: BIMNFE—IKEN x + n AE, MAEARET —NKER
k + k FIFE -

1.3. RA5KH 9
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HIRE

BIRE, BaEL, MTERARMES . BIER Ids FER—#5, AlLEEd S Data.Fin REH, 4
IR AT VR T XL A E

data Fin : Nat -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)

WERZELT, BT LE 2 RMESREZ— D Nat, REF-E—D KRB . Ft, EAE—1
[(WEEAS] BLENES, MEMIELATEN—RES . #FRY, #E [FE—TEEH
PREREE ]| FAMES . Khrt, ER—MHRTIEEAZE @ - 1) EENMBENAT, H
oo REATEEML Fin BEMSE G140, Fin 5 ATHEIIEN 0 ] 4 Z[AIEEE K2 -

HAPRAFIIHIE — N ERIFERS -

NTFIE s x PICRIVARERY, Fz ZEMEZTNILE, FS n MZEWEE nvt PILHE . Fin il
Nat REK5|, ERRZEGPILENNEE . ATRNTEWEHBETZEIICE, FIHBTTEmE
Fin Z-

WZHIFREIN, Fin KIRMAEZ —ETFRORAEFWEREE . AT o TEREEE T —1EF n
MERAEIRSE, FATATL Fin o MERTHTZEH/NT n FIBEEE .

fltn, THERFREIRIES ERVE RG] Fin o R Vect FHIILR, EFE Prelude H5E Y-

index : Fin n -> Vect n a -> a
index FZ (x :: x8) = x
index (FS k) (x :: xs) = index k Xs

ZRBN— P REFRHAEMENE. MERNAFHZAENKENTE (GMELTAZE ) |
R TEF AT TG E . RERER/RILE T MEAXAKTRZAENKE, SREAZNTE-
EROXEMEH Nl R0, FORXMEIARRERFAE - MTIEERR Fin 2 HAEN Fin 0 17T

., Bt o AATEER 2. B, MRGRHEE-NMZEREFELRITE, HEBE—PoRER KT
R, RARHMEBETS 0 N 2.

BATHFHNEE—T index HIRAL.

index : Fin n -> Vect n a -> a

EEZWNSE: —REH o TEFRERTE, DUE—1MRE N a o TEMAE . MEXEAEW
NEF: n fla, ENRHEESMAE . index 8 T B 4. HATHATLUF index MRS E:
index : {a:Type} -> {n:Nat} -> Fin n -> Vect n a -> a

RASHARMERHNRTES O PEE, ENHEEENA index N4 H, FAENAMEF LI Fin
n fl Vect n a FIZERMPHESHIE . BRI LVNEFEL, EREHPENESARG HIEZ
FHRASNABMERES F, Bl B2 S1EARRSE B8 E - FRRXSEUNIR AT LIZE N R E i
{a=value} Ml {n=value} K EXM%E, a0

index {a=Int} {n=2} FZ (2 :: 3 :: Nil)

Khr L, TRREFREERN, EASEEATLAE — MW AT LR index B BARUXAE:

1.3. RA5KH 10



Idris 155 308, R 1.3.1

index : (i:Fin n) -> (xs:Vect n a) -> a

SAFEAEME RS, N ERNERELESECENIT, §8TRECOEMmISS .

ok, {3 EES LD AERSCE, B {var = pat} K —1REREE, FEXT [pat] #17
TECILEL - fFlan:

isEmpty : Vect n a -> Bool
isEmpty {n = Z} _ = True
isEmpty {n = S k} _ = False

rusingJ iﬂ‘E

AR ARASERMRE 2 T0FH, FHRFERBINT, sESHASSHEMMEELT - Fi
., BATATREA AL LA N B SRR A SRR AL, ENmERE L THIfR (EHFE Data.Vect Y
Elem FEX)

data IsElem : a -> Vect n a -> Type where

Here : {x:a} -> {xs:Vect n a} -> IsElem x (x :: xs)
There : {x,y:a} -> {xs:Vect n a} -> IsElem x xs -> IsElem x (y :: xs)

IsElem x xs FSEBIHA T x & xs FHI—PICE - AT LG XEANEF: HIRNITEEREM
SLEREST A Here, 7EMEMEFHEINA There. #40:

testVec : Vect 4 Int
testVec =3 :: 4 :: 5 :: 6 :: Nil

inVect : IsElem 5 Main.testVec
inVect = There (There Here)

HE: EASRESERE

HERUFEL S, RURERFIE VNG FEIFL 3 B BN AR ERZ R MIERAE
o Bk FEAERBIEER HRE, IRTFEN testVec RME—NIRES - ERTEAGITH, FATBIE
ZARAET Main R -

WRAREFEAMARINRASE, e SFECE SCEMPIE . Jy# it FRl, AT fEH using BRIV EMAIR
 HHBLRIRE S HrR e KRBT -

using (x:a, y:a, xs:Vect n a)
data IsElem : a -> Vect n a -> Type where
Here : IsElem x (x :: xs)
There : IsElem x xs -> IsElem x (y :: xs)

E: BT S nutual BHBR

B, RESEERRELLAHE AR E L, FOAHBERTY R vF R BBy KA R — R L, TRAE
B TR R RN e L (REXRAN 2RHH0L, W GE2MERE] (¢t 44)) - AT, BEERH
AT A mutual BB, © AVFEERE BN R AR E -

mutual
even : Nat -> Bool

(87 Néatezggan)

1.3. RA5KH 11
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(cznayLéat)
even Z = True
even (S k) = odd k

odd : Nat -> Bool

odd Z = False
odd (S k) = even k

£ mutual SR, EIEPTEMREFEHSBERM, RERREE . Fit, BE D REEREA LI T
R AL AT R B YAZ ATy

1.3.5 1/0

MR ENEF AR M TS A A RGHT L, A CEAE LR AH - 1 Idris XA
(Pure) FIETH, RIAXEERIER (Side-Effect) - 1 1/O FIMESE T EARR LEHERIERAD -
FIEAE Idris 77, SXHEROZE E#ERAE 10 KA.

data I0 a -- I0 #/EREI—1ETN o« BIE

A 1545 H 10 TRAIE L, !:KETLTEL_T%&?M?E’J 1/O BERAT 4, MARMAEPITEN] - RE#H
VRN B AT REUESNR AT - BATEZ N 10 KIRRERF T

main : I0 O
main = putStrLn "Hello world"

putStrln FIRAA T EEZ —MFF &, WEEL 1/0 EhRE—PMETRE O BIKE . E4F
— R putstr IR H 7 AT R EARAT -

putStrLln : String -> I0 ()
putStr  : String -> I0 ()

FATRT LA P R A\ s O A B

getLine : I0 String

Prelude %€ XL TIRZE 1/0 #1E, Blinh TG, [TEAS:

data File -- abstract
data Mode = Read | Write | ReadWrite

openFile : (f : String) -> (m : Mode) -> IO (Either FileError File)
closeFile : File -> I0 O

fGetLine : (h : File) -> I0 (Either FileError String)
fPutStr : (h : File) -> (str : String) -> I0 (Either FileError ())
fEQOF : File -> IO Bool

FEEEFILEEEIRE Either . FIAENTATRER KL -

1.3.6 [do] B¥E

1/0 BB H REFERL MES), F—MTREOREEANT - MTERBAT - R, 10 22—l
ZRA, ARBNTEEREGR—DHENLER . Kb, TOTH do-icikk R

1.3. RA5KH 12
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greet : I0 O

greet = do putStr "What is your name? "
name <- getLine
putStrLn ("Hello " ++ name)

HI% x <- iovalue HUT 10 a RAIH) I/0 ##1E iovalue, RIFRIRIN a HFILERENT R x o 7EX
FHEOL T, getLine 2iR[A—> I0 String, KM name MIRAN String. HEHTHEE: do HAIHR
R B EL AN E —FI 1R - pure BEAEARFHANTRHEBEEFEAZI 10 #IEF:

pure : a -> I0 a

JEEBNTEEE], do-iCiXHOX BRRRENNEN, FHAT I ER -

1.3.7 6%

W, REWMSHSERE AR RE (BHEH, Idis XA T KB (Eager) KEFRHK) - 4K
M, XHANEREERTTE . FELIT R
ifThenElse : Bool -> a -> a -> a

ifThenElse True t e =t
ifThenElse False t e = e

R EEAZH c Bl e “FHZ—, MIEHHH FNZEBINHELEWATEIN if. . . then. ..
elseémﬁ) o HANTERE RF HEIWSEAPORE . L, Idris 38T Lazy BIERE, ERFEY
5 ENIER

data Lazy : Type -> Type where
Delay : (val : a) -> Lazy a

Force : Lazy a -> a

RN Lazy a FMERHHEN Force MRHISKIER A SHRE - Idris KA EIRFIE Lazy KA, HET7E
WETE Lazy a fl a ZIEFEAREHE, R2ZIRM . FIEFRATAT LU ifThenElse B FHIXFE, TAE(T
il Force B, Delay HIEZCHH:

ifThenElse : Bool -> Lazy a -> Lazy a -> a
ifThenElse True t e =t
ifThenElse False t e = e

1.3.8 SEIERA

FATAT LGB REEREY, KR IS EIRC B AT 55 K€ LT BEEM « 3 F— P REdERE T,
HEMESRTRIN T WSEEASWEHRARTEN Inf T 2. XSS T RUNSEEE
b, BRREY T MLHFEIRSMELMAE . RETERE N — DT Stream, HEXAT:

codata Stream : Type -> Type where
(::) : (e : a) -> Stream a -> Stream a

R A B AT DX

data Stream : Type -> Type where
(::) : (e : a) => Inf (Stream a) -> Stream a

DA 2 4n e FH AR EdE R R Stream RIMETLH BIRLHIF T - EXEENCIE T —1 1 MIT5 -
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ones : Stream Nat
ones = 1 :: ones

HEAEE: REEXREASRFOEELANTS BABIRSW - fln, UWMUEEEE— 1 T5ER
S Bk

mutual
codata Blue a = B a (Red a)
codata Red a = R a (Blue a)

mutual
blue : Blue Nat
blue = B 1 red

red : Red Nat
red = R 1 blue

mutual
findB : (a -> Bool) -> Blue a -> a
findB f (B x r) = if f x then x else findR f r

findR : (a -> Bool) -> Red a -> a
findR f (R x b) = if f x then x else findB f b

main : I0 O
main = do println $ findB (== 1) blue

ATEEE, BT NESRSRIRM BN E Inf B, FHREEERE A2FERmE
TEFERE HOMIE SRR T A MR 24t - fltn, DINREFPEE (1] -

mutual
data Blue : Type -> Type where
B : a -> Inf (Red a) -> Blue a

data Red : Type -> Type where
R : a -> Inf (Blue a) -> Red a

mutual
blue : Blue Nat
blue = B 1 red

red : Red Nat
red = R 1 blue

mutual
findB : (a -> Bool) -> Blue a -> a
findB f (B x r) = if f x then x else findR f r

findR : (a -> Bool) -> Red a -> a
findR f (R x b) = if f x then x else findB f b

main : I0 O
main = do println $ findB (== 1) blue

Ror: [VAGEERRTL ] A (AR IAYEE R |

REFELT (Codata Type) HIZFRNRIFHEIERA (Coinductive Data Type) , VIGNEIERALAD
SVFNEFR R RSB R R« WEX FFE, Inductive Type R T U MFE/NE term F438E HE 5 A
term; T Coinductive Type MIFHIA T 40 MBE K term 7 fERCE/NTY term - — 35 B B HT AT 5
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R HRAAE A (RRFAG) FiR/IAShR (ELUAG) - 2% 8 Belleve HIHIZ -

1.3.9 HHAEIERA

Idris 5 7 1RZ W HAEIRRTAE R I (WAATHUPR 1ibs/ HRMK DO ) - ATk T HAH—
#ihar . 1EH Prelude.idr KJ—HF5r, THHAMREF S WED 1dis BT HEHFA,

List 5 Vect

FMCZ N List I Vect FURRA T .
data List a = Nil | (::) a (List a)

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a->Vect k a -> Vect (S k) a

ERENME SR GEERER: REMERARERRNmaZEPEYN, T sER (K
LB THEAI L), HF OB SRIEERRORIAE - (E—FEENE, R N1 A o EE
FRIRBLE AT S SR Bl

o [1 #UR Nil
e [1,2,31 7 1 :: 2 :: 3 :: Nil

FERRE T — Lo THAEIX LR A AR %L - map * List Fl Vect W4T TEE, ©RH— T HRERH
PR R RE IR L

map : (a -> b) -> List a -> List b
map £ [] 1
map £ (x :: xs) = f x :: map f xs

map £ [] 1

map : (@ => b) -> Vect na -> Vect n b
map f (x :: xs) =f x :: map f xs

flan, AELNEBEAE, DI MREBECRU 2 IR

intVec : Vect 5 Int
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

PREL map AT N HEIXFERZ AR PR DT R RLL

*UsefulTypes> show (map double intVec)
"[2, 4, 6, 8, 10]" : String

HLZAHT List M Vect HIBREUITFEHEIES B LU T 2301
e libs/prelude/Prelude/List.idr
e libs/base/Data/List.idr

e libs/base/Data/Vect.idr

1.3. RA5KH 15
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e libs/base/Data/VectType.idr

HA LI B0 EF R

BAIME: B RESBRIER B

FERRIEXE SN E BRI E . H A2 (FHE 2 K% (Anonymous Function) :

*xUsefulTypes> show (map (\x => x * 2) intVec)
"[2, 4, 6, 8, 10]" : String

I \x => val & T —MEARE, EEZ—128 x HFREIRERX val. BEZREATDIEZZ A
ZH, ENLLES SRR, W \x, y, z => val. SEHALDIERXMEERE, 1 \x : Int => x *
2, WAMEABEALEL, W\, y) => x + y-

*UsefulTypes> show (map (* 2) intVec)
"[2, 4, 6, 8, 10]" : String

(x2) SERETIRE, 2 KIREHIEE, EXBEIT N \x => x x 2. [FFE, @0 SWEITH \x => 2

* Xo

TR BELREHERECURES RN A-FE (Lambda Expression) -

Maybe

Maybe R T RLAE, FontaE R ERTEE:

data Maybe a = Just a | Nothing

Maybe & —F N A RERMATIERIER TR IM 20 Flan, 78 List (MHEME) FERA ATRES = 4B
Eﬁﬁatf

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup Z (x :: xs) Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

maybe PREUH T Maybe REIE, MREFENNENH—PEEL,  BNFREE—EOAE:

maybe : Lazy b -> Lazy (a -> b) -> Maybe a -> b

ERAT D SRR EIEAE Lazy N AT ZERAEE—SWMEN, MitEZEAEZIAZEmE
FEERIRSE, FHBENTFENIRMES Lazy -

pii:|

(ERT LU PU N N R R R AR (Pair) -

data Pair a b = MkPair a b

FXTE’J%E*ETLJ%EE (a b), MIEL T, HEEN Pair a b B MkPair a b- JGZH (Tuple) A]
BEEBRMIE, BB RENTFNREER:
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fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

*UsefulTypes> fst jim

"Jim" : String

*UsefulTypes> snd jim

(25, "Cambridge") : (Int, String)

*xUsefulTypes> jim == ("Jim", (25, "Cambridge"))
True : Bool

Rt

TRIFXS VF RT3 TR I RBKI T 5 — 1 e & I E -

data DPair : (a : Type) -> (P : a -> Type) -> Type where
MkDPair : {P : a -> Type} -> (x : a) -> P x -> DPair a P

FItE, EHEEERE . (a : A » P) FZoRH A M P MAAFPXTAIRTY, HAZ5 a ATHIIE P . (
a ** p ) SE—MIZRBME . GIa0,  FATAT LUK — DB — DR E KR Vect MM — P F
¥

vec : (n : Nat ** Vect n Int)
vec = (2 *x [3, 4])

WRFER, WALUEEE R KIER, & 5E2%E M

vec : DPair Nat (\n => Vect n Int)
vec = MkDPair 2 [3, 4]

AR, RAEGEAS AT URTE [ & KR 15— DT RAE . BT DAER BRI ESEHTE
WIS — TRl _, XHE R EE AT A {E:

vec : (n : Nat ** Vect n Int)
vec = (_ *x [3, 41)

AR EA T E M TEBAZFR B — DTSR, FIEE, E W nT IR H k.

vec : (n ** Vect n Int)
vec = (_ *x [3, 4])

MG ) — > F At R ERSR B O, HAR R SIRLFESCRNE - Flin, A E A g
Vect HIITLER, FAINEHELFELRAEMIKE.

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)

TR Vect HZ, ZERIRE H.

filter p Nil = (_ **x [1)

o BT, HNFERE filter BITHA R RARRE R EME R . Sk, FAIEH
with iC¥%, B ARFRAN T AP EIE TR T
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filter p (x :: xs) with (filter p xs)
| ¢ _ *kx xs' ) = if (p x) then ( _ *x x :: xs' ) else ( _ **x xs' )

HNZE2ES with MEEIERE -
TRIFP XA HARIE [ Sigma KA -

L

LK (Record) #UEEAKLZME (GUFA FBR (Field) ) WHEE—E . Idris &4 T2 EFI
BIA, e BB T UIRIATE R 7 B AR AL . MEERESH IEIAANE, Idris FAICRETES
Haskell F&EBRAFFIEL - G0, FAT LR — D A2 FAIER HIC KRR

record Person where
constructor MkPerson
firstName, middleName, lastName : String
age : Int

fred : Person
fred = MkPerson "Fred" "Joe" "Bloggs" 30

T35 2% 2 M constructor KEETFIE, FB 7£ where KRBT Z/HHMARFLEE (B H
firstName - middleName - lastName DL} age) o

*Record> firstName fred
"Fred" : String

*Record> age fred

30 : Int

*Record> :t firstName
firstName : Person -> String

AL DHFBEREFT — MO (YR, 27 & —PEF T AETBRIICEIEIAE)

*Record> record { firstName = "Jim" } fred
MkPerson "Jim" "Joe" "Bloggs" 30 : Person
*Record> record { firstName = "Jim", age $= (+ 1) } fred

MkPerson "Jim" "Joe" "Bloggs" 31 : Person
WB1% record { field = val, ... } @4M—PEH NERTEEFENEE - = HFBEMTHE,
1M $= 385 B — 1> e EOR B BAE -
BMORAEE BORmAZAPE L, XEWEFRAESZ MOTHEA -
LR L SALFK PR F BT A IR S R EECF BT, B2 45 R RBRAR) -
record Class where
constructor ClassInfo

students : Vect n Person
className : String

¥ students FIFEEHNAFKENAMRERZZ2H, FNENZHIIZICRAILET.

addStudent : Person -> Class -> Class
addStudent p ¢ = record { students = p :: students c } c

*Record> addStudent fred (ClassInfo [] "CS")
ClassInfo [MkPerson "Fred" "Joe" "Bloggs" 30] "CS" : Class
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FATH T I $= SREREHE X addStudent:

addStudent' : Person -> Class -> Class
addStudent' p ¢ = record { students $= (p ::) } ¢

LRI H T

Idris W5 T8 T 07 WIAEF i EIL R HETE - Pl H— D FBRATLLUEE RIEAR ¢ (b (a ©)) 7
A, PR EwtlE LN A T

record { a->b->c = val } x

XERE—NEPNE R, BT EE a->b->c IRPIFBEESWHIEEN val. ZEERE %M, B record
{ a->b->c = val } KBHE—IRECERE . 50N, URIA] RUE LU R EE T % B

record { a->b->c } x

$= ILIERHEIC SRR IVERL -

HRHIC K

IR AR TE - 1IL%IWE BS, ELEREETBIEER . ESMENERXENSHHI, 5
FACFREZ Z G - G, — xS RE ] E SR

record Prod a b where
constructor Times
fst : a
snd : b

FEFIRITE ) class i05%, FERAIR/INATH Vect it size ZEUILICRADA/NRIRHIH KA o 40

record SizedClass (size : Nat) where
constructor SizedClassInfo
students : Vect size Person
className : String

HER E LU M 2 A1) addStudent BIS(T , BOWIXSECEIRAA N . IR T IINEE MR
WRHERTL SRR MI — o BT EMA EARBURE, BRI s Hsaema.

addStudent : Person -> SizedClass n -> SizedClass (S n)
addStudent p ¢ = SizedClassInfo (p :: students c) (className c)

1.3.10 ELERERX
let ?}3]3%

FREMERTER let H0ERITE:

mirror : List a -> List a
mirror xs = let xs' = reverse xs in
xs ++ xs'

FATE AT L 1et J05E Rt AT B AVBEITES - flan, BT bizan N7 =UE kPRI F B, HA]
LLE S TR A TR A A S BT BL:
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data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in
name ++ " is " ++ show age ++ " years old"

FIRHES

Idris $2{t 7 #% ICEEAEIIRMREE . — BP0y

[ expression | qualifiers ]

SARYEE 5 5> FR PR E = qualifiers Y RERISRE, o SRIEFIEK expression FE A E R A T
# . i, ﬁff]ﬂ&%&“ﬂu?ﬁﬁmﬁmﬁﬁﬂﬁ ﬁ%ﬁﬁﬁl%

pythag : Int -> List (Int, Int, Int)
pythagn = [ (x, y, z) | z <- [1..n], y <= [1..2], x <= [1..y],
X*X + yxy == z*z ]

[a..b] ;2R —MHEMN a 2 b EIIRIRE ML - KA, [a,b..c] Pla, b ZENEE, Wi
M a F ¢ B9%5 . EF{EAT Nat« Int LK Integer, TAIFH T Prelude FH) enumFromTo 5
enumFromThenTo BR%Y -

Bor: S

S5 (Comprehension) KT EAMWETH, B {xlxCx0}, KR b0 HHRER
(Qualifier) - 1F¥1ES W HEAR} -

case iitﬁ

R R W ST FEN R case Rk . Fll1, DR EEEAENTHLHTHS
RIS

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of
(x, y) => (x, strTail y)

break & M ERE, ENAERRECRE true B ERFFHFED N —DFAFROFY . AR EHEN
EIREIRFFR, HREEREE A FAF BRI — 15 -

— case RIANATIEELZFE L, FlinERE— 1R Maybe a FIFEME - EIAE list_lookup,
ERRGIARINERTHTE, HRIBEANRE Nothing. FATATLUHAE RS lookup_default, i%
BREGERT I EHICE, HRIIFANLREBOAE:

lookup_default : Nat -> List a -> a -> a
lookup_default i xs def = case list_lookup i xs of
Nothing => def
Just x => x

ERFERN, FATMSREZRSINEOE, SR EBIME:

*UsefulTypes> lookup_default 2 [3,4,5,6] (-1)
5 : Integer

(8yNeéatezgeam)
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(cznayLéat)
*UsefulTypes> lookup_default 4 [3,4,5,6] (-1)
-1 : Integer

FR®#:  case M TS A IAIFRIA AT B A0, DILBE SR gn S HHEN AL, EHRAENH T KM
let A M-GPERIEILE - & X AL FEOF -

o B IREL —MHEFREME, HFORE —PMERFEEERE -
o SERHRIE (O8] 1, ARBXMRBTLTHENIZL case KIAAT R E M EENE -

1.3.11 %4

Idris X9 584 (&, Total) %05 #B5r (i, Partial) (. 2REHLLNELZ—
o MTPEFRIBMASEZIE, 5§
o PEESNEER, FIRE), ATREN TCIREE R ATHI S

HNRECR SRR, BATAT LUA N HRTIETA TIZR B S Mt 4 - B, EHRATE—MREZE
B9 string HIEREL, RIEERETE, BAFEFRENRE2HTAR:

o HERERE, MAEHERIBEPMRE DRI string HIME;
o HERMEL, B2 RBEAHHEAEATRIES, $&RE—1 string-

Idris AR T X5, B ERGEEHTRIGE (EWRNE [-FREY (éat 8) —TTHTI) AR, W
Lo BRI 2ok (g - e, B TR ER KRN — N AZIERREORE, 84 R E R T
‘Jf%ﬂ:lﬁlﬁt, AERTRER U 2R 2BRE - WEEDRTERREFER, HEMA200E
. ZENER

1.4 #0O

HATEH B EE LB B LA AFEIE R TERRE. g, BIEEERsEAFZEDATLUMERT
Int - Integer Al Double . FATAHEL == EM TR HIIRREL . BATBZ TG —p T FORER
ENGERE=E

Mit, FTAVEHT 8O (Interface) , ERLIT Haskell FAIETE (Typeclass) 2L Rust HHIFF
P (Trait) - ATEXED, TNBME T —HAIHBRPKE - Show HOFE TR ENFIF, T
Prelude H2E 3, F#RMHL T RHERM N String FIHEO:

interface Show a where
show : a -> String

EREM— PR HIREL, FATRZT show O H) J7¥& (Method) -

show : Show a => a -> String

BATATLUEE AR [7E a LT Show MLV, ZMEGEZ — 1 HIA a HiRE—1 String. | &
TR LAESE e R S B IERSEEZ A M - B, Nat #) Show SKBLAIE S

Show Nat where
show Z = "Z"
show (S k) = "s" ++ show k
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Idris> show (S8 (S (S Z)))
"sssZ" : String

—AREAFELI— IR EO, iR, KRB R - SSHREHESATLE SR . i,
LMW SEL AN ES (AEIEeR g Sy) 2R (WEEd, RAENREIRFEHR) - fi
. ER[aEE L —" Show LI, FATHFEFINHITELINT Show, HFNEMERRFENTEE
¥l String:

Show a => Show (Vect n a) where

show xs = "[" ++ show' xs ++ "]'" where
show' : Vect n a -> String
show' Nil = "
show' (x :: Nil) = show x
show' (x :: xs) = show x ++ ", " ++ show' xs

B FEFEEBRHERE T — 1S T Show M) a, Vect n a X Show HISEHI Ay

1.41 EIAEX

FESRSENLT Eq M. ERIT IRERTHSMIE, FrH ARSI T E.
interface Eq a where

(==) : a -> a -> Bool
(/=) : a ->a -> Bool

BRRBLI— O, FALLASE HPTEIERE L. B0, 9 Nat LY Eq:

Eq Nat where
Z = 7 = True
(8x)==(y)=x==y
Z == (8 y) = False
(S x) ==1 = False

X /=y =not (x ==1y)
PR RAEMEIF I /= TIEANRNA T == FIENEERNEE . B, FAEDEHSRREDSTTIE
NEETERBEOAE LSRG E:
interface Eq a where

(==) : a -> a -> Bool

(/=) : a -> a -> Bool

=y =mnot (x ==y)
=y =not (x /=y)

Eq KB NERESEHATFTEE Y == 8 /= “HZ—, MATEEAENL . HFHORDTEENL, HF
FEERIBINE L, A2 M HZEINE -

1.4.2 ¥ REEO

EOWA LY . ZHE, HEXR Eq B F— P2 E LHF KR ord. FATATLUE X —1> ord #£1H,
EFR T 4K Eq FTIESNEE LT B BRI
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data Ordering = LT | EQ | GT

interface Eq a => Ord a where
compare : a —-> a -> Ordering

(<) : a -> a -> Bool
(>) : a ->a -> Bool
(k=) : a -> a -> Bool
(>=) : a -> a -> Bool
max : a -> a -> a
min : a -> a -> a

sort : Ord a => List a -> List a

BREC FOMSEBIR A Z MR . 2RISR GER SN, LUES 2k, Flan:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)

FE: 05 mutual B

B mutual BREM, Idris FEA%EDE [SEE LEMHA] AIMN . 78 mutual SRAET,  Idris 29 PUREHEAT EORE
(elaborate) : FH—HIHRMY, 55 T E L . HHARTESEOFYRN, FMaEREORL
AR ANERETTIERTY, 58 TR SR IR LU TR FIERIAE XL -

1.43 HEF5MNHT

HEi, BAEENATESER N Type HRESEO T . 8%, BN ETHERT (BEEZE)) |
MESMeh & KA. BRSEIAN Type, TATNFERME AL FEH . FlU0, Prelude
i E X IR T 0 Functor A:

interface Functor (f : Type -> Type) where
map : (m : a->b) >fa->fb
PR T ARV RR BN A BN AEH B, IR — BN R List BB — TR L

Functor List where
map f []
map f (x::xs)

1

f x :: map f xs

Idris> map (*2) [1..10]
[2, 4, 6, 8, 10, 12, 14, 16, 18, 20] : List Integer

FET Functor ZJ5, FMMEBERE LN T Applicative T, EXTEREUN AL ST T A%
infixl 2 <x>
interface Functor f => Applicative (f : Type -> Type) where

pure : a ->f a
(<>) : £ (a->b) >fa->fb
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1.4.4 BT5 do-idi:

BT Monad AFBATNAEMITEHTELE, TR [ [do] 0¥ (¢at 12) — T do- I IEAIELRL .
B T HIH E XA Applicative, /\EXﬁH—F:

interface Applicative m => Monad (m : Type -> Type) where
(>>>) :ma->(->mb) >mb

T do BRI &R LA N ETEZD #e.

e x <-v; e FH v >>= (\x => ¢)

o v; e H v >>= (\_ => e)

e let x =v; e Hlet x =v in e
I0 SEPL T Monad, ‘B FHFEIEMKECE L - FM A LI Maybe & LSEHL, HSIHAIF:
Monad Maybe where

Nothing >>= k
(Just x) >>=k

Nothing
k x

ST, BATATLUE L — A FH 1 Maybe Tnt HEIMEAL, JFH B T35S 2 A0,

m_add : Maybe Int -> Maybe Int -> Maybe Int

m_add x y = do x' <- x -- M z IRUE
y'o<-y - My FIREUE
pure (x' + y') —— HHHIN

ox My BATH, ?@i&%)ﬁ\gﬁﬁpj’ﬂzﬂitﬁ@ HEA—PEZEEAFH, U_”J [B] Nothing
( [fail-fast SESEN | ) - Nothing HIIEHLIET >>= BAERFREH, H do-iC AR

+Interfaces> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*Interfaces> m_add (Just 20) Nothing
Nothing : Maybe Int

R ILESR E

B FEATHFZLAIX do-il EF EAN RE R4 % FREARE - flan, BxENAE— 1 EE
readNumber, B MIZHI&ILE— 14, 7El7§517f§]— 5( @ Just x B AE, HNHRE Nothing

readNumber : I0 (Maybe Nat)
readNumber = do
input <- getLine
if all isDigit (unpack input)
then pure (Just (cast input))
else pure Nothing

WRBEEH T KRR SN, & I TTNGERE Nothing BIREL,  FF 4 F AT GEARZ X
readNumber FHITIEZCICEL.

readNumbers : I0 (Maybe (Nat, Nat))
readNumbers =
do x <- readNumber
case x of
Nothing => pure Nothing

(89Neéatezgcam)
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(¢znayLéat)
Just x_ok => do y <- readNumber
case y of
Nothing => pure Nothing
Just y_ok => pure (Just (x_ok, y_ok))

WRERZHERFTELNE, ERHRERZRBERRSTEIEER! BN E B ICEAH A K —
o fFlan, FATTUXN Just x_ok HIFEZHEFTHEC UTHAL.:

readNumbers : I0 (Maybe (Nat, Nat))
readNumbers =
do Just x_ok <- readNumber
Just y_ok <- readNumber
pure (Just (x_ok, y_ok))

SR R AT IR AE . BATINAEZBE T Nothing HITEIL, FrLLZEEAHE2 2T | HATA LHE
Nothing FIBHLANINE %

readNumbers : I0 (Maybe (Nat, Nat))
readNumbers =
do Just x_ok <- readNumber | Nothing => pure Nothing
Just y_ok <- readNumber | Nothing => pure Nothing
pure (Just (x_ok, y_ok))

BURRASEY) readNumbers BURSWIMRSE 2 —H (EPrL, ERERVRIEZENE, HH2EEIEFEEYIR
FIE=) « BHFIBAIE LR (Just x_ok <- Ml Just y_ok <-) ZAH T HIERSE: HHEICH, do
PR RIS IR T - E RS T IRESE, B pgEn LB A E—1 .

1-igk

FEREZBHT, do-ILIES P AL EMIR, FERESE — KSR E R OL T ICE, a0 1
m_add - BCBSFATAT LU A B AN R A A 5 2K

m_add : Maybe Int -> Maybe Int -> Maybe Int

m_add x y = pure (!x + ly)

lexpr ILVARIR expr B AESRIEF L ATHFE AR E - M L, BATATLUE + BHINE LT REN
HIT 2% R AL

(M) :ma->a

RIMEER, EHAR—DEMRE, TE—MEE! EEET, TRIEN texpr 27 expr FIHHIE
AR ATREMER T, FERER — P 2WNET x, REHTRIVE texpr- BRBAXNZHNLE

ARIRFFRE L SEH LT - SR, VB AR LEE RN ARGE, FIRHZICEERE T
RAH N ET .

fan, A

let y = 42 in f !(g !(print y) !x)

SHERT

let y = 42 in do y' <- print y
x' <= x
gl <_ g yl XI
fg'
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S

AT B (6at, 19) —THERMIIREFICEHLEREA, B NHTAEMSEH T
Monad #ll Alternative HIZR Y.

interface Applicative f => Alternative (f : Type -> Type) where
empty : f a
> : fa->fa->fa

HBE, SN [ exp | quall, qual2, -, qualn 1 HH quali A]PAA:
o —MHEMF x <~ e
o — 5L (Guard) , ER&—1TEEN Bool HIFKIAFK
o —let HBE let x = e

FEEF— 1S lexp | quall, qual2, -, qualn], EEMEMIEN SFIRK FIRER qual & H
PLUT R EG#1% 9 guard qual:

guard : Alternative f => Bool -> f ()
EEZHES A X YA do-1LiA:

do { quall; qual2; ...; qualn; pure exp; }

EAHBEFHESTE n_add FER (alternative) & X H:

m_add : Maybe Int -> Maybe Int -> Maybe Int
madd x y = [ x' +y' | x' <-x, y' <-y1]

1.45 >iERES

do-ILVE N HEIR M T A —FE VL, MIENA MA RE T A—FE%. KW ENCE L RER
F2%|T Conor McBride 1 Ross Paterson FI8 X [WIEHKINHFRE] U HEXL -

B, AEFEATEP— TR n_add . 'ERTHE R — D ERERF R A EIF M Maybe Int HIZEUHY
{H - FATAT USSR % R

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (£ a)
m_app _ _ Nothing

HATAT LA EARIRE 5 —M m_add, EFEM T RENHANERBES, 8 258 n_app HH:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
m_add' x y = m_app (m_app (Just (+)) x) y

S5HEMEN m_app, FATAWMEA>ERES (Idiom Brackets) SRMGXERE . Jtt, 1ol MG TFE
XFEH Maybe R —1 Applicative HISEIH, HrA <x> B2 LTS B K m_app MR (B EAE Idris
PEFESL)

Applicative Maybe where
pure = Just

(85Néatezgcam)

L Conor McBride and Ross Paterson. 2008. Applicative programming with effects. J. Funct. Program. 18, 1 (January
2008), 1-13. DOI=10.1017/S0956796807006326 http://dx.doi.org/10.1017/S0956796807006326
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(czndyLéat)

Just (f a)
Nothing

(Just f) <*> (Just a)
<*%k>

IR <o BSEEL, BATTLE TEZHEERE, EFRBNAH [ £ at - an 1] SWEIFN pure £

<k> gl <*> - <*> an:

m_add' : Maybe Int -> Maybe Int -> Maybe Int
madd' xy= [l x+y |]

IR B R

SIECIEAEE SOR(ERR AR IRAEH - McBride 1 Paterson Hi N ELXHEHIEF A 7 RIEZ -

data Expr = Var String - T
| Val Int - B
| Add Expr Expr —- f[li&

Xﬁz%&*ﬁ?&i?w g (RRA String) BN Int H, HAJEESRM . FATE L THIERA
Eval RE3RIERS

data Eval : Type -> Type where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

R RAE S CRAERIE R P EWE RN ZE T U ER AR DAL - BATELE L1, EE
SRAETRE A AN SCBUHE -

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where
fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs) = if (x == v)
then (Just val)
else (fetchVal xs)

TEE SOZTE S BIRE RSN, BTSN Eval EFCHRIREL, XHEE B2 N Eval 21 Applicative
AISEIR - 7E Eval BEWSSEIN Applicative ZHj, FA1XAIH Eval SEIH Functor:

Functor Eval where
map f (MkEval g) = MkEval (\e => map f (g e))

Applicative Eval where
pure x = MkEval (\e => Just x)

(<x>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ = Nothing

BUAERE AT AAESRAEFOA ZURT, dad B ) ST 15 R AL B ER R T

eval : Expr -> Eval Int

eval (Var x) = fetch x

eval (Val x) = [| x I]

eval (Add x y) [l eval x + eval y |]

(89 Néatezgean)
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(cznayLéat)
runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of
MkEval envFn => envFn env

1.4.6 #y&SEHL

B EANFE DRI LIE - MEOMZ DL, Gl Fa8ETaRES —FMI%. i, =
BUATLUR R DX A4

[myord] Ord Nat where

compare Z (S n) = GT
compare (S n) Z = LT
compare Z Z = EQ

compare (S x) (8 y) = compare @{myord} x y

CHREFE AR T — W, N E R4 nyord. B compare @{myord} £/ compare
SRt AL, TNE M Nat FBOASEIL . AT AHER R MHTF— Nat §1% - 5E LT
B

testList : List Nat
testList = [3,4,1]

FATATLAFE Tdris #R7R-7F BN Ord SEDRHEFF, ZJ5 {3 H a2 B myord:

*named_impl> show (sort testList)

"[s0, sssO, ssss0]" : String
*named_impl> show (sort @{myord} testList)
"[ssssO, sssO, sO]" : String

B, FATHRFEDIR a2 BICHEET - B0 Prelude 77 SLAJERE Semigroup #H:
interface Semigroup ty where

(<+>) : ty => ty -> ty

HeE JE LT 428 Monoid, B [47C] neutral #7JE7 Semigroup:

interface Semigroup ty => Monoid ty where
neutral : ty

FATATLLHA Nat € X Semigroup 5 Monoid HIMIFIANERISLIL, — NETINNE, —PMETRE:

[PlusNatSemi] Semigroup Nat where
+>) xy=x+y

[MultNatSemi] Semigroup Nat where
+>) xy=x *y

IERI2TCH 0, MMRIEHKIZTCH 1. EHitk, FATFEE XL Monoid HISEILA, CRIEY @ T IEWHY
Semigroup T4 EHE . FATAI LUMIT using MAIRMEDLX — 5 :

[PlusNatMonoid] Monoid Nat using PlusNatSemi where
neutral = 0

[MultNatMonoid] Monoid Nat using MultNatSemi where
neutral = 1
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using PlusNatSemi MFJ¥5HH PlusNatMonoid N4 ¥ fE PlusNatSemi o

1.4.7 WEES

HEARESZ T8, @ RELS AR B ARSI . Flan.

interface Monad m => MonadState s (m : Type -> Type) | m where
get : m s
put : s >m O

EREOF, BERIZEONEIATFEMNE n BI0], 1 s AIRIERIDRE . ClEdEREOFERZE
A0 L m SR . BATE m 74 MonadState K i€ S (Determining Parameter) , FEH
ERATEEREIFIES -

1.5 #5406

Idris P27 H— B AL . B ERE & — D P%ER module A HARMAKE, — &7 import 1EAIH
TERAHEER, BF—HRA . FOFREBEHSE L Flan, DUREERE LT Z X KR BTree
<Z£ Btree.idr jCﬁ#q“> :

module Btree

public export
data BTree a = Leaf
| Node (BTree a) a (BTree a)

export

insert : Ord a => a -> BTree a -> BTree a

insert x Leaf = Node Leaf x Leaf

insert x (Node 1 v r) = if (x < v) then (Node (insert x 1) v r)
else (Node 1 v (insert x r))

export

toList : BTree a -> List a

toList Leaf = []

toList (Node 1 v r) = Btree.toList 1 ++ (v :: Btree.toList r)

export

toTree : Ord a => List a —-> BTree a
toTree [] = Leaf

toTree (x :: xs) = insert x (toTree xs)

EIfiFF export F public export UtAH [ WFLEAFRAEE BRI AR, o 2 J5 ST F2MRE -
XEAH T — main ¥ (£ bmain.idr XHH) , EFIFH Btree BIRIIFIERHET:

module Main
import Btree
main : I0 O

main = do let t = toTree [1,8,2,7,9,3]
print (Btree.tolist t)

Al —Z R AT LIFEZ MR A E S A FR] LUEE R0k T BRE (Qualified) - Btree FEERHIE L)
EHRAFAA T
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e Btree.BTree
e Btree.Leaf

e Btree.Node

e Btree.insert
e Btree.tolist

e Btree.toTree

WMRZAFRATLAX 7, g 248 H R BRI IR E 4 - Eid IR E . ECERIBENRIRTY, AT LIHRR
AR -

BRI A Z BB IEXAEKAR, REEE 2B WHEHR —%5 - import A H T 51 H U
%,Eﬁﬁ.%ﬁ%%@omw,mmmfwhuégﬁyﬁfwwuih,ﬁ$ﬁﬁ%ﬁﬁﬁ$%
module foo.bar. WIHRZFHIME—ZRKZE, HE nain REFESLHH LN Main, TXHFHT

F=H Main.idr.

1.5.1 S MBI

Idris ¥R REER A & A AT DLPE R AT 40K L A )« BOIB L T, R 8 LT & IR _ AV E
o X BT e MEEE O RSN ERA T o Tdris RVFRFREL . RAFIE OFRICH private~ export B
public export. Ef1HI—ME LWT:

o private F/RTEENETH o HABIAEN -

e export RN R R S HH -

omﬂkemwtﬁ%%ﬁ%ﬂ%%gﬁmo

FEEAT WA A — PR, E TCiES| T WA ARAIZ PR - B30, public export HIE XL ITCIAMHH
FAE R, T export IR ITCIAMHAE AR . X2 1 B FAE 2 Wtk SRR A HE 1

X T R B X

e export TR HRA

e public export FRFHRBFIE L, FHZIFEXAIHERH . M52, E RS HIAS SR
BOR—#59 . 45 public export LB KAEN T iR =/AmE1T-

EMR:  Idris FRFE SCRAIREE 90 S R EOR O « AEOVIBEEIRE AT WAERY, QR SR SRR
HEER . ARARFENTE MDY public export AIRER A« M, Idris & TCIERFNIZRTL SR X -

BESX public export FMKE BREIE SG= T HIRY, AP AIZ R E SCEPR EMmalioh TR APT #—
whar e B, PRAFIREASCAEE S H R B e B L, BN S B RR HA BAY public export -

o T RE R B R S

RTFREEREL, HIR SR
« export MIRTUMIELRIE S H Y
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« public export HIRIUMIEAF ARG 282 5 HH)

ST HE A RS

MFEEO, Hikanr:
o export MIEMZLFEFHH

o public export MM « JIIEAFIEIAE LA S HIH)

%access 84

FRIAP) T T LB %access FEA L, Fl40:
module Btree
%access export
public export
data BTree a = Leaf
| Node (BTree a) a (BTree a)
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node 1 v r) = if (x < v) then (Node (insert x 1) v r)
else (Node 1 v (insert x 1))
toList : BTree a -> List a
toList Leaf = []
toList (Node 1 v r) = Btree.toList 1 ++ (v :: Btree.toList r)
toTree : Ord a => List a -> BTree a

toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

FEXFEOLT, EEVIRHEMFF R R BT LIS N export, A private-

INERREER API 1G5

FFh, X import f#H public VT, FIRAERASARBIRER S - Fl0:
module A

import B
import public C

R A ZFHAT a, KSR ¢ TR ARBMRAR, ELEFAER B 5 HAEMART .

1.5.2 B =

FEE SURIRI AR, B2 REaUE L — a2 2Sm) - IR, Zan g md bl B30 A . HIRELER—
RIRNEH LR, EXEFEMN:
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module Foo

namespace X
test : Int -> Int
test x = x * 2

namespace y

test : String -> String
test x = x ++ x

XA (B ARIRITHY)) B SE B PR E 4 Foo.x.test Foo.y.test EXT WA EE, —FA]
AR F bR AR BRI B

*Foo> test 3

6 : Int
*Foo> test "foo"
"foofoo" : String

1.5.3 JEZS{LHIIR

—HERHHZ N SEET parameters A RHTIEZL (Parameterise) , 10

parameters (x : Nat, y : Nat)
addAll : Nat -> Nat
addAll z = x +y + z

parameters JEZRIIEMZ R PRGN R REFBIRER[IFINESHER . BAoRU, wE
FILZ MBI Z RS R AAI - RSN, BS OB TE - e REPL 1AM addA1l K%L
i, EIE LN RS B

*params> :t addAll
addAll : Nat -> Nat -> Nat -> Nat

PARC LR 7 S

addAll : (x : Nat) -> (y : Nat) -> (z : Nat) -> Nat
addAll x yz=x +y + 2

FEZRAT LU E - FE P A REFIEEIE 88 BAMAINE ST, SR el G S8R AH R - BN
LU R RS SRR L.

parameters (y : Nat, xs : Vect x a)
data Vects : Type -> Type where
MkVects : Vect y a -> Vects a

append : Vects a -> Vect (x + y) a
append (MkVects ys) = xs ++ ys

T RS RIMER] Vects Bi# append, FATLMAMBE xs Ml y. FEIXE, FATATLUH S AIFFH
REBRBR B ATRERERT Hi HO(E.

+xparams> show (append _ _ (MkVects
"[1, 2, 3, 4, 5, 6]" : String

[t,2,3] [4,5,61))

#R: % (Parameter) 5%% (Argument)
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R, TR £(x), £ NEEL, x MFRIERE £ B SE (Parameter) , BHES; £
BRES S, FRR B SERAERFRSE0 (Argument) |, BFRSES . FlU0 £(2) FE 2 BIAEA
f(x) 5

FEFRECF, ENFAHBRAES5%S, —BEFE [24] - AEAFEABMX SN, 45
AEE [(BZ] 5 [%$%] -

1.6 £

Idris B —ERBRMERG, ©2RYEC a4 0 ERR R LT HAT IO . A ST
LABC & Idris g iFas R BT 203 78 «

1.6.1 AR

BRAE S LI N

o Bk, HRET package FHR—PMEAMM . @4 A LUEEMERA Idris FRAFF - iPKG #8350
WA & — 551 version, ERHZALMA A4 -

o WIRENEMTE, <field> = <value>
HAFEH D modules FBL, MRNHIENESHRAERSIE . flan, A% —1 Idris £ naths, &
¥ Maths.idr - Maths.NumOps.idr Maths.BinOps.idr #ll Maths.HexOps.idr JUAMEER, HARR A
SR
package maths
modules = Maths
, Maths.NumOps

, Maths.BinOps
, Maths.Hex0Ops

HEaHFRIF 7T LIETE Idris B 1ibs HEH LU B =T7F 45 .

1.6.2 fEHAEIHE
Idris ARG RAGEE), BF —LRTH 6 SRR . LRUKERE - Fl, X TR Hn
maths £, AT MR FEXFEE A Idris:
o+ idris --build maths.ipkg S H TR
o idris --install maths.ipkg LA, HHAT LI EE Idris FEAFEFIM] -
o idris --clean maths.ipkg ZMHIBRAG RS g = A B B ARG ST HiUAT 31 -
—H maths F1Z3E5ER, A2 7% --package maths (59 -p maths) BLATLAGER T - f540:

idris -p maths Main.idr
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1.6.3 M Idris £
ERAINE ARG A SE BANNRAESE . ZERSIE tests N ipkg K HAIRE - BT FIME
BREULAGRE 10 () -

HHIA idris --testpkg yourmodule.ipkg 5, ME ARG Y| B main KELTHY tests AL, JF
FEVRPLES LR SRS QI — MR SO B S FRImI SR SO T U IVTE -

A S 0 SR S TR I BRI R EOE S H putStrin REMASER - MEHEZEASEINAEAT
Wb, RS SRR -

FATLLU R IR ESIF NG, ENERAE naths 479 NumOps FIRRIR A E L
module Maths.NumOps
%access export -- to make functions under test visible

double : Num a => a -> a
double a = a + a

triple : Num a => a -> a
triple a = a + double a

—MBREZH Test.NumOps TR BRI ER AT 75 B A
module Test.NumOps

import Maths.NumOps

%access export -- to make the test functions visible

assertEq : Eq a => (given : a) -> (expected : a) -> I0 ()
assertEq g e = if g == e

then putStrLn "Test Passed"

else putStrLn "Test Failed"

assertNotEq : Eq a => (given : a) -> (expected : a) -> I0 ()
assertNotEq g e = if not (g == e)

then putStrLn "Test Passed"

else putStrLn "Test Failed"

testDouble : I0 ()
testDouble = assertEq (double 2) 4

testTriple : I0 ()
testTriple = assertNotEq (triple 2) 5

BRI £ assertEq fll assertNotEq 5y A T B AT TR S oo AR R AR S5t o SEBR b BT R
testDouble I testTriple, EfJ7E maths.ipkg CIFHFHIE G

package maths

modules = Maths.NumOps
, Test.NumOps

tests = Test.NumOps.testDouble
, Test.NumOps.testTriple

M HEZE 17 idris --testpkg maths.ipkg AR
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> idris --testpkg maths.ipkg

Type checking ./Maths/NumOps.idr

Type checking ./Test/NumOps.idr

Type checking /var/folders/63/np5g0d5j54x1s0z12rf41wxm0000gp/T/idristests144128232716531729.idr
Test Passed

Test Passed

FEEYTEANEH assertEq Ml assertNoEq AR, EATZUAETITE Test Passed iR
R o

1.6.4 7£ Atom 5 FH ALK

WERARAEE Atom ey, JFHARE T 75—, Bl import Lightyear B(# import Pruviloj,
B LNRFFEALL Atom FIIEEROZINEA 4 o KA LT &M ipkg SUHERTER - REFREAE T —TH
SR — ipkg SR S ERLEAZ,  AdX B T4 Hth P FLFI i fa B 5R:

o A — myProject K-

o NIN—7 myProject.ipkg I, B EUH R

package myProject

pkgs = pruviloj, lightyear

o 7E Atom ', {HASCHSREITH myProject LR .
HEER

WL, AETREROEESE, TESEFMN (éat 151) #3231

1.7 . RRBRERELS

HEATH, BAIER CE RS FFERRE — P ERRF T — M EBERRICUES RS, WEZR
B KB ZITa B if. . . then. . .else I9iE . AR REORRIERTH BEH R R
REFPERE RIETUH -

1.7.1 ESHER

BHOE, BATPRESGES HRIRE . BATEEE . A/RMEE, H Ty RER:

data Ty = TyInt | TyBool | TyFun Ty Ty

FNTAT LA G — RSO LT AR BLHY Tdris 20— — B SR — 2, FFLAAT MRS
fE—FEB 5.

interpTy : Ty -> Type

interpTy Tylnt = Integer

interpTy TyBool = Bool

interpTy (TyFun a t) = interpTy a -> interpTy t

FAVREE L —FRRTTE, ERARFRRRRUENERF . BILELIREAXNREY 5§ LRI L 2N R
(B30 KEFIE- ETFLALUM Vect BURRARRA - AT ETUHREREHMEN, FEEH
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FRNEHXSEL - Ak, FANTE using HAE L TIIETRENRE .  (EEE IR THRESE A 6
7E using RHEH) -

using (G:Vect n Ty)

FikF Gl R B REAFAN B B HRERES]:

data Expr : Vect n Ty -> Ty -> Type

FIXA W BRI N

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G) t

data Expr : Vect n Ty -> Ty -> Type where

Var : HasType i G t -> Expr G t

Val : (x : Integer) -> Expr G TyInt

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

If : Expr G TyBool —->
Lazy (Expr G a) ->
Lazy (Expr G a) -> Expr G a

ERHEAER T Idris PRERE R Vect M Fin KA. EfIAFE Prelude 1, BIHEATHFESNEN]:

import Data.Vect
import Data.Fin

AT oA FGa i HRARERG|, AR DI H S 2 B SCH 5 HIZ0E SRR - NEFAR
BRI -

HATHZEMER T AL FHERRE - BN de Bruijn #RRG . ZRELUEIE L TP NERR
AIIERARSEIR: HasType i G T 2% R i £ LN 6 HHIEREL T AIEH - ERE LT

data HasType : (i : Fin n) -> Vect n Ty -> Ty -> Type where
Stop : HasType FZ (t :: G) t
Pop : HasType k G t -> HasType (FS k) (u :: G t

FAHE Stop Hfiaia € LA RH REAAUER, 1 Pop n U”JILT:EU?T RS n ML E L E R 2
REME, BLAE o+t DR FEXEY, XBWERINTED var &2y, FH stop K5I HHEAE
N KA &, Pop Stop HKEIHT—1, LALLM

Var : HasType 1 Gt -> Expr G t

FrPA, EFRIEX \x. \y. x y #, ZE x # de Bruijn 5|7 1, F[FERH Pop Stop ; & y A de
Bruijn &30 0, AIRRN Stop - FATELIHEE AR Z A A FEEREREA] -

E#EH T BB ARER:

Val : (x : Integer) -> Expr G TyInt

A ﬁﬁ?ﬁ'&%@%ﬁlo Ry a -> ¢ MREEREN, - PHIEE N a WRHFZE, EFALTX
REIRER:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

BB FHEZ — D a 8] ¢ BIRE—1REDN a BYE, FE—PREDN ¢ E-
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App : Expr G (TyFun a t) -> Expr G a -> Expr G t

FEAAVFERR I BT, BREAFHRE 2 ERBASHEREL.

Op : (interpTy a -> interpTy b -> interpTy c) ->
Expr G a -> Expr G b -> Expr G c

Ba, 1f FAFURIELE € A RIERMMH SRR, B0 IOV MRINREL . FATR x5 SCEERETE
RIE, ARHOEFND S 2HKRE:

If : Expr G TyBool ->
Lazy (Expr G a) ->
Lazy (Expr G a) ->
Expr G a

1.7.2 REBERES

HBA X Expr RIART, FAVFEIAEAIANEELHIM . Env 72— PRIEEE RS H AR
REIHAE - REUERFERERF M EFERBEKA, HER% IR 7 — R BT
TR s RN NiL FERS,  XEERUREMEA —MASIFRIEA T - —MNAZRAE LTI E CHIIER,
HATAT AN 152 —ME:

data Env : Vect n Ty -> Type where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup Stop (x :: x8) = x
lookup (Pop k) (x :: xs) = lookup k xs

AT AN, BRESSHE — MRIER € IR Expr B — DR Idris [ERRELT -

interp : Env G -> Expr G t -> interpTy t

EnS%, RSNZERE ST - MTFE—MEd, FAHE TSR Idris {5

interp env (Var i)
interp env (Val x)
interp env (Lam sc)
interp env (App f s)
interp env (Op op x y)
interp env (If x t e)

lookup i env

x

\x => interp (x :: env) sc

interp env f (interp env s)

op (interp env x) (interp env y)

if interp env x then interp env t
else interp env e

HAPRZ —MEG ML T —1EE, BARZEMMEFREE:

interp env (Var i) = lookup i env

KF—ME, BAATFEREEEFRHFEETT

interp env (Val x) = x

A MHEE R R - BATE T — MR X ASIERSR RS, EERERHE—EE. B, B
EE EI’JX%Z_I U\ﬂ%iZHTE’Jﬁ%ﬂ%%ﬁ%ﬁE Idris PREL:
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interp env (Lam sc) = \x => interp (x :: env) sc

T REN A, BINEREREAESY, FERFRENATSH . RAFE, RIELRE, M £
DRERBE— T REL
interp env (App f s) = interp env f (interp env s)

IBEFFGM S T RIS A SN R Idris #458& - X TF288F, BATEREEENHE #EE L, *F
F 1f, TATEEM Idris B if. . .then. . .else i -

interp env (Op op x y)
interp env (If x t e)

op (interp env x) (interp env y)
if interp env x then interp env t
else interp env e

1.7.3 WK

HATAT GRS — 1 AR R - E00, F DA EIER, \x. \y. y + x ATGHA0 MR

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var Stop) (Var (Pop Stop))))

HHBFZEMFEE fact, W \x. if (x == 0) then 1 else (fact (x-1) * x), A G TNE
AW

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))
(Val 1)
(Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
(Var Stop)))

4

1.7.4 &17

TEREER, BAHRE —1 main FEFF, EARYEH P AU AR TR R 4L

main : I0 ()

main = do putStr "Enter a number:
x <- getLine
println (interp [] fact (cast x))

BEALH) cast B—MREHHIRE, ERRERNHBILT, CRHER A MR X8, THPFRE
Wl TEEEL, ERIANEVERNRE 0 o 7E Idris B BRI X MEF 27 E 4R

$ idris interp.idr

/I ()

A VA S A A4 Version 1.3.1
A ) http://www.idris-lang.org/
/__IN__,_/_ [/_[____/ Type :? for help

Type checking ./interp.idr
*interp> :exec

Enter a number: 6

720

*interp>
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MAHME: cast

Prelude FEX T — Cast 1 0 RSLHETAY  [B] FiE .

interface Cast from to where
cast : from -> to

XN ZHRED, E TR BIRREL . RN R, KRR ALY
S B 28 RERERR BRI EE L.

1.8 MAS [with] #HN

1.8.1 KR ILEE

AT RA A LUK THE, B RESHRE A RIER S BIERAE - fltn, MRBNTEH (++)
MIRERASL, MeEHErEHRER TS RIE:

(++) : Vect n a -> Vect m a -> Vect (n + m) a
(++) {n=Z} 1 ys = ys
(++) {n=S k} (x :: xs) ys = x :: Xs ++ ys

&80 n 72 00 B PR DR, SEE - MBELTAE, BAErE AR RERR -

1.8.2 with #M: PCEAHEME

BMNAEFEILEF E T H  (Intermediate Computation) %5 R - Idris 5 % Eplgr H AL A

(View) BIE%, MICRHE T —#iE, B with #UN, EHEIERBEES P ICE(ES MW
BT EEEMER T ERERERT,  with HNS 8 ELEE SRR ERH In— & i 2
o

FACLE N M ETIERE T « XIREATH with HENLE:

filter : (a -> Bool) -> Vect n a -> (p ** Vect p a)
filter p [1 = C _ **x [1)
filter p (x :: xs) with (filter p xs)
filter p (x :: xs) | ( _ #* xs' ) = if (p x) then ( _ ** x :: xs' ) else ( _ ** xs' )

FEX B with MWAJRELLFRATAEFS (deconstruct) “filter p xs* IR« ZMARKNLFISEIE filter
p (x :: xs) fUT with NAIRIRNTT, ZER—FEE | FHBEMMMFELER ( _ %+ xs' ).
ZZD%W&%?E%E/]#ﬁT%_E'ﬁﬁzﬁzﬁﬁﬁ@ﬁ%_ﬁﬁ]—] ﬁBA | ZEMIEIR R 4, AT LU BE

filter p (x :: xs) with (filter p xs)
| ¢ _ »kx xs' ) = if (p x) then ( _ *x x :: xs' ) else ( _ *x xs' )

Br: XNMOIFHAL, EAETRENAT, GFTARNMA, WA AREEEDRE, XL with
WEESIRM T H 24 - S8 p G255 (p #x Vect p a) T p HEIL KR, XA AIRES X W) 2EE & A
. HEHIEE 5% Type-Driven Development with Idris 28 —#R5>H K] Views: extending pattern
matching —%F, BEEBEEE T RN -

with WAIEATLUE:

I Conor McBride and James McKinna. 2004. The view from the left. J. Funct. Program. 14, 1 (January 2004), 69-111.
https://doi.org/10.1017/S0956 796803004829
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foo : Int -> Int -> Bool
foo n m with (succ n)
foo _ m | 2 with (succ m)

foo _ _ | 2 | 3 = True
foo _ _ | 2 | _ = False
foo _ | _ = False

WARA R REA S BERBRE, A2 HERSEMACSEWER — FAT LhsEE i i 2ok
TRE—MEREN . EXRBU T, WARLHSEEALEEAN . flt, —1 Nat ANREBLGRT
AR WRERBE, MAERETHA Nat ZF - FN, EHEH D Nat ZFFMN—:

data Parity : Nat -> Type where
Even : Parity (n + n)
0dd : Parity (8 (n + n))

PR Parity 4 Nat F—" #LA (View) - EHFfE— BEEEL (Covering Function) il
K Nat AOZT (I 40 338 HH L AT A

parity : (n:Nat) -> Parity n

BAZIEHEE parity FIE XL - AT LA TE S with SINREE — N RE,  ERF—1 BIREGEE AL
— 25 BT (False 8 0, True N 1, 1RAIEERT) -

natToBin : Nat -> List Bool

natToBin Z = Nil

natToBin k with (parity k)
natToBin (j + j) | Even = False :: natToBin j
natToBin (S (j + j)) | 0dd = True :: natToBin j

parity k FOERNME | k AP, 0 parity k BISERIGAT k. Fib, BRT | AWAIFRITTELSR
(Even I 0dd) MUREZSL, FATAR AT HhZE R | Z2Mp & Bl

e Y parity k R{EHN Even B, FATAILURIE Even HiEaRUE X Parity (n + n), RfRIASEL
k B AIRES (5 + §) - XFE (5 + ) BB T | 2 x, 11 Even &2 HELEL M - 5L
B BIREL 5 2WHTE = FFS B -

o BN, Y parity k RK{EH 0dd B, R 0dd MIELRA0E X Parity (S (n + n)), JRIGSH
SHREN NN s (G + j), EM odd SHIAE | N, FEEERE ;] SWHEE = F5HH
-
FE, ERELESA § ZEE—1 W (+), ERAREREAMINSE c28eE T HESE .

A&7 (éat 42) FEZF] parity FRFEREME L -

1.8.3 with 5iFBH

FOE KR S DL EC A7 e BOIE R, A L JURIE DL AR S 2C Al i HUE A SE 2R « itk RAT LA
with WAJINE proof p /A4, HIREIEECAERAIEM S a4 p HINAZIER = . Fln.

data Foo = FInt Int | FBool Bool

optional : Foo -> Maybe Int
optional (FInt x) = Just x
optional (FBool b) = Nothing

isFInt : (foo:Foo) -> Maybe (x : Int #* (optional foo = Just x))
isFInt foo with (optional foo) proof p

(8yNeéatezgeam)
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(¢znéyLéat)
isFInt foo | Nothing = Nothing -- here, p : Nothing = optional foo
isFInt foo | (Just x) = Just (x ** Refl) —-- here, p : Just z = optional foo
1.9 EHIEH
1.9.1 %

Idris AT LA B am i ARSI, , PR IEIE REEFIEHE - MEERNER, MdXBELEHEMESE
R RE 3L

data (=) : a -> b -> Type where
Refl : x = x

AT R ME 2 (AER AT LUAIMTARSENE, IRTIA & AR S I e — 7 sURL R (B SE AR <% - flan:

fivelsFive : 5 =5
fivelsFive = Refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = Refl

1.9.2 ZRH

T‘?‘**/\7*§§ﬂ” L, EEEMES - B, AR E L —BuBHmEIB I T, Tk
ZERAUHTTR EN E2M0E| (Cat 44) —T) - Ht, BT DUH 2 RBRIE S L a5 2 A AT g
I, BN AR RER AR B AR5 4k

disjoint : (n : Nat) -> Z = S n -> Void
disjoint n p = replace {P = disjointTy} p ()
where
disjointTy : Nat -> Type
disjointTy Z = ()
disjointTy (S k) = Void

HATARL AR LR AT TAE — ARt L, ERNHERE replace, RIEMHFIUEMIAZHIFIA . AR
flrp, BATRIAFELERFETIEFARMIEN, F— 0 UFEERRE (A=Td) KE, M T —1
TR KT (E -

—BHE TERENITTER, BT ERZREY - void FEEFE L, HTHBIIEE-

void : Void -> a

1.9.3 FHEH

LR A FE AT R BTN, LRI S el (Normalized) - HANFRATHEZEIEHLITF RT
plus FIUFLFTH (Reduction Behaviour) HJEHE:

plusReduces : (n:Nat) -> plus Z n =n

HAVRZEBHMIPRAG R TR, MRS LRI 1 - KPR EIEMIRIRE R 2 8 H 3508 A5 1 X
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Bl MBAFRIENME, EAATENMERF, R ERRIRHE 2 IGRIER R BA 1RO 8RRt

Jit -

BN ASAEX BFEANGTT, Curry-Howard [FIF[] @R 73X MK R - KIEBRFL, K plus BIE X
F plus Z n BV T n:

plusReduces n = Refl

WRBA A AU ZOE A, IE AT, BOTIIERY S — N2 H0R VT E LA - R FFE
A DUE plus S — 1238 n LiB)T:

plusReducesZ : (n:Nat) -> n = plus n Z

plusReducesZ Z = Refl

plusReducesZ (S k) = cong (plusReducesZ k)

cong JEFEHE XM — M EREL, EIEWHEEMER T RER -

cong : {f : t >u} >a=b->fa=1fb

FATAT I AN a4k _E 82 31T 0 R RE A ZR S -

plusReducesS : (m:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS Z m = Refl
plusReducesS (S k) m = cong (plusReducesS k m)

RN TanttF LA E B, — 0 S HEt A mRT . HEHEBREERN, HFEBEMAS
T, HEHRATCEAX R [HE] THEIE .«

Idris 2t TR BEARBHIEE S, Er DIHBEIEN - X TERmEESE P B0 S IEA R E L 3,
Z: W, | Theorem Proving| (éat 136) -

1.9.4 SEEAHHIUERA

UERAE B SR AT ESEBeh BARF 4 - lan, EZATM [AS [ with] BN (6at 39) —Tirp, FATH
PREY parity SEEL T natToBin:

parity : (n:Nat) -> Parity n

IR, FAIHARRME parity BIE L - BITAIRE B EEERZR THEIXFE:

parity : (n:Nat) -> Parity n

parity Z = Even {n=Z}

parity (S Z) = 0dd {n=Z}

parity (S (8 k)) with (parity k)
parity (S (S (j + 3))) | Even
parity (8 (S (8 (j + 3)))) | 0Odd

Even {n=S j}
0dd {n=S j}

IR, B = RIRALER T TC 15w
TR R R

Parity (8 (8 (j + j)))
WA views.parity F with BRAGFHMIES

KM
(87 Néatezggan)

1 Timothy G. Griffin. 1989. A formulae-as-type notion of control. In Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages (POPL ‘90). ACM, New York, NY, USA, 47-58.
DOI=10.1145/96709.96714 http://doi.acm.org/10.1145/96709.96714
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(cznayLéat)
Parity (S j + S j) (Even MUZEZ)
5
Parity (S (S (plus j j))) (FAEREA)
HRZBIAITHD

[AIREET, 7 Even HIRMFHIEI s j + 5 § HAGEBRNBANFTER Parity AMIPIRE . TAIHHE
S (8 ()plus i) FEF s i+ s 3, (HFFER Idris WERHE « JATAT LIS IZE XIZ—2% 31 (0 Pl
(éat 7)

parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = 0dd {n=z}

parity (S (S k)) with (parity k)

parity (8 (S (7 + 3))) | Even = let result = Even {n=S j} in
7helpEven

parity (8 (8 (S (j + j)))) | 0dd = let result = 0dd {n=S j} in
7help0dd

T helpEven FIRA & EHIFFANIFFEN Even HIEIIERAT 4

j : Nat
result : Parity (S (plus j (S j)))

helpEven : Parity (S (S (plus j j)))

A EA AT LGRS — DB R R, FERRE HE AFHENEA

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (8 (S (plus j j)))

helpEven j p = rewrite plusSuccRightSucc j j in p

revrite ... in BIARVFIRRIEMASIEIENRNEEE, DB RANTERNRE . EXE, Hf16#
FT plusSuccRightSucc, HEMYIT:

plusSuccRightSucc : (left : Nat) -> (right : Nat) -> S (left + right) = left + S right

AT LIEE helpEven HIATMIZ NI RE R rewrite FIRE, RE—F—FHM. FATMNTFEHFLE:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S8 (plus j j)))
helpEven j p = 7helpEven_rhs

SEE T helpEven_rhs AL

j : Nat
p : Parity (S (plus j (S j)))

helpEven_rhs : Parity (S (S (plus j j)))

YRGS N plusSuccRightSucce j j AT rewrite S, ESHHERXs (G + ) =3 + 8 5,
MIMERBHHE § + s BUIUSs (5 + 3) (FEXHEEZ S (plus j 30, EHS (G + 3 %ﬂﬁﬁﬁﬁ%)
helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S8 (plus j j)))

helpEven j p = rewrite plusSuccRightSucc j j in 7helpEven_rhs

MAEH: & helpEven_rhs IR HIFHRN A ETH 4, BFENAFHMEXNMER  (H)
_rewrite_rule HJEZY)

j : Nat
(ayNéatezgean)
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(¢zniyLéat)
p : Parity (S (plus j (S j)))
_rewrite_rule : S (plus j j) = plus j (S j)

helpEven_rhs : Parity (S (plus j (S j)))

XF 0dd FIBE DU rewrite A — 1 HIBIEEL, FATATLAFERK parity:

helpEven : (j : Nat) -> Parity (S j + S j) -> Parity (S (S8 (plus j j)))
helpEven j p = rewrite plusSuccRightSucc j j in p

helpOdd : (j : Nat) -> Parity (8 (S (j + S j))) -> Parity (S (S (S (§ + jNN
helpOdd j p = rewrite plusSuccRightSucc j j in p

parity : (n:Nat) -> Parity n

parity Z = Even {n=Z}

parity (S Z) = 0dd {n=Z}

parity (S (S k)) with (parity k)
parity (S (S (j + 3))) | Even = helpEven j (Even {n = S j})
parity (S (8 (S8 (j + j)))) | 0dd help0dd j (0dd {n = S j})

revrite MISEEEANTI B H T AN THAERTEE, ANt @B IUEAEFE (W |Theorem Proving| (éat, 136))
PEETE-

1.9.5 Z2HReE

WARBANERVBZEEERATIEY, EITEX ) & BT IEEN — B, —PMEBOvrE
AIRERIRI AR OLE S, FH HRIERZK I - ARBATBAERE H— D= RERITER, ETFREATATLL
UERA AR 2R P

-- FIFERE LA [hal

emptyl : Void

emptyl = hd [] where
hd : List a -> a
hd (x :: xs) = x

empty2 : Void
empty2 = empty2

Idris ZAENTRENHEREEE2ME, BOTERTRAT T total f4RIEE . HAZEE LK
WA RE SRR AN 222 1Y

*Theorems> :total emptyl
AIREANSES, HT:  emptyl#hd
Aoed, BAHEBRIEOTFEL
*Theorems> :total empty2
ﬂ%m%%,m%ﬁﬁ%@e@WQ

ERXERT (el —id — HTEIRBEATAEN, TeMeE S RIGETERE . Hit, %
RERRTH - AL LR REPRE N e 2], FEHEAE MO R =4 g iR

total empty2 : Void
empty2 = empty2

X ./theorems.idr HITEMME
theorems.idr:25:empty2 FIREAEAE, HTHIIRE empty2
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& N REHR, Bl (éat 41) — TS S A 5 4 SLIIE T R 524 10

*theorems> :total disjoint
Total

TEMREDIRRERTH - BPICT AT, RE £ DT
- BEHEITHARERRA

o & REW —H, 4—F7] (FREEM) ZBEFFHEHAERENE £ B, LR RHESHZ —
T2 -

o EHAEIRRILLIT FREAIE (strictly positive)

o BHEMERATE 2R HREL

TR 5mERSH

BOMBOLT, Idris £VFATE RREMAE L, TLRExEE - MMEEBBIL T, HEEEERRER
e, WNXRERIETNTA LA RIS, X TR AT RERV I AR Bt — 2R FAITAT DLESRR AL
FESEER, dEEd LUR R R

o [ —-total JRiIFESSH-

o FURSCHRIN %default total F84 - FERXZEHIFTHE S ERNEEN), FRIEZHHbRC
H partial-

£ Ydefault total M ZJ5 HIFTHMEHI X WERZETLM . SHMEN, Ydefault partial A
Z 5 WIEE SRR B -

A, JFaZ R ——varnpartial & NWAEIRE BASE 200k R BETE — D&

et E KR

BER, EefhEast N ER! 5, ATEIRBRATAEE, CORBHRTH, Hit—5% i
LR KRFASERNZERE . K, FFSKIBARE AR, R EHRETRER A T2
BB IETERR - IRANERIE SN EIE |

st RRR

ARRIE - MERFZZ2E, H Idis AMX2I00, TG ERA iR, DURAHZIES
WIS - KBS S TRPTE 1 TR B R HRRE S B P — D SRR MBI AT I, RiE L
DURMEFER - flan, DUFE LTCHERRE R total, FARMERTLIEME filter (< x) xs —&E/NT

(x :: xs8):

gsort : Ord a => List a -> List a
gsort [1 =[]
gsort (x :: xs)
= gsort (filter (< x) xs) ++
(x :: gsort (filter (>= x) xs))

prelude F7E Y] assert_smaller HZEMFHIX| A

assert_smaller : a -> a -> a
assert_smaller x y = y
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CRAHRER S M58, HEhemaEeERaEss y £450 5T x. YRERECTERR
I, B TRERE S 2R . BIE EERE TR ES -

total
gsort : Ord a => List a -> List a
gsort [1 =[]
gsort (x :: xs)

= gsort (assert_smaller (x :: xs) (filter (< x) xs)) ++

(x :: gsort (assert_smaller (x :: xs) (filter (>= x) xs)))

FIE assert_smaller (x :: xs) (filter (<= x) xs) Wi F filter LR EE/DTHEN (x ::
xs) o

TEEMIRAIEIL T, AL assert_total BERF— 1 RIAZ IR N B R T2

assert_total : a -> a
assert_total x = x

WH, IRE B A REL, A AN SRR AT, BUE AN AN E LK), SEE MR HONR SR
FOoRBIRREL (i C FEHE) ST, E2IEREM -

1.10 B E X

MR miET, BN RBERESRTFENRBLMENREORFRORIEAR (FEXEEEN]HE
AAE) , ATREWL, ENTEE ERREENR . N, BT parity KA

data Parity : Nat -> Type where
Even : Parity (an + n)
0dd : Parity (S (n + n))

AT EE LI

parity : (n:Nat) -> Parity n

parity Z = Even {n=Z}

parity (S Z) = 0dd {n=Z}

parity (S (S k)) with (parity k)
parity (8 (8 (j + j))) | Even
parity (8 (8 (8 (j + 3)))) | 0dd

Even {n=S j}
0dd {n=S j}

CRIBHIEE T ZHEE, — W&, BRI T k2 BEEES « HF . xR 0 25
BOLRABEON T RIUEWT R ULZ AR - IRTT, REREIHAEL T E.

viewsbroken.idr:12:10: FEM#HT ViewsBroken.parity A MIAT:
Parity (plus (S j) (8 j))

5
Parity (S (S (plus j j)))

HIRTARITHD

BAR:
5

plus (S j) (8 j)

S (S (plus j j))
DBt NI

RGBS HIFEA] GrO+G+1) M 243+ TIEMUUAHEFERIE - XZEHN plus ZEE DS
EBVTER, MES-MEF, B PEMFSIERER - AS8L, R ETEFBEL . X
EW RS — NdEAZN M ESEFAREE R
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1.10.1 IEATE X

IGES %€ L (Provisional Definition) MFFA THERUERA AR LIFS B R IL 0T . B FEEH W IME
i

o £ & (Prototyping) I, & W7EFTE RIERAA T 45 R AT MRARFT -

o TE BABE RBFPRS, HORIERIRATE R b RSN, B WEREIET 0
IR & LAY S ARSI E R, REER 7= Tk = 5IAEZ . FTF parity & Xh:
parity : (n:Nat) -> Parity n
parity Z = Even {n=Z}
parity (S Z) = 0dd {n=Z}
parity (S (S k)) with (parity k)

parity (S (8 (j + j))) | Even ?= Even {n=S j}
parity (S (S (S (j + j)))) | 0dd 7= 0dd {n=S j}

YERGXFIEAE, Idris AERERBER, MEEESHEPZE— M0, DUREERREER . Idis &
BIRENTER LR 55, HA FRIEEIRAN R £ 4 A
*views> :m

Global holes:
[views.parity_lemma_2,views.parity_lemma_1]

HAHE—IYTHIRET
*views> :p views.parity_lemma_1

—————————————————————————————————— (views.parity_lemma_1) --—---—--
{holeO} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (plus j j)))

-views.parity_lemma_1>

ERIWASEC j, —PRENLEERETHZER, 55— 12 value, ERBATEIRE E AN H
WME - BN BEIRREGRELIELERATGREERIZE . BATA LA Prelude HHJLLR 2 HHA R H
ioF

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (left + right) = left + (S right)

EFH compute BB plus HIE X:
-views.parity_lemma_1> compute

—————————————————————————————————— (views.parity_lemma_1) -—---—---
{hole0} : (j : Nat) -> (Parity (S (plus j (S j)))) -> Parity (S (S (plus j j)))

FERNHA intros 25, HA1H:

-views.parity_lemma_1> intros

j : Nat

value : Parity (S (plus j (S j)))
—————————————————————————————————— (views.parity_lemma_1) ——--——---
{hole2} : Parity (S8 (S (plus j j)))

g, WATSRRHXT 5 F1 § A plusSuccRightSucc EEHNI, B4 H:
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-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat

value : Parity (S (plus j (S j)))
—————————————————————————————————— (views.parity_lemma_1) —-—-—-—----
{hole3} : Parity (S8 (plus j (8 j)))

sym & — MEREHE LHIREL, BRI E S R

sym : 1 =r >r =1
sym Refl = Refl

FATATLLA trivial SEEERSZAILIER, EXAERRT I value. 5 51 BAIER 72058 24
[A] -

PRAEBATA] AFESRARAF A i [wath FUN): DR [BI{E] (6at 39) —TTH ) natToBin | . £{F 42 i
H9 101010 - = FFHIEE LIV F RoR

*views> show (matToBin 42)
"[False, True, False, True, False, Truel]" : String

1.10.2 #HAMHEE

Idris ZEARIFREF AT B e e (REEERIRTF A SRME T IR EMIER) - SRmaRHE,  FrR7ER
IRy, AEFEBIEHRTMELES - Trﬁﬁ%bMZWﬂMﬁﬁfﬁiTﬁéﬁﬁ,W%WﬁﬁﬂT
—NMER, RS B SR ANEAERT ] 2 UE B L AR T T !

I, Idris $&HE T — D AERIHIE (coercion) HEL, B ARVFRATEH KT ERIIE:

believe_me : a -> b

B, ERERALAERER /I RN EIEREH, kS /MR (FIREEINTR C EF) 1
P& AT A A - T B/ views.parity_lemma_1 B [ERH] H:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

exact MG RVFEANNIZIESRMIE—DEETIHIE . A, BAIWr=%8 HAERIERD .

1.10.3 7nfl: —aEHIER

FATAERT BT Parity MASKHL T Nat B "ot hI B . X E, Bl RRn T H FE R A
SRS EASIER) " EHIER e . BATE BAESHEMA) Nat BRG] " 3bHE XE—FE R, B
EHFR (XE Binary) SHEX (XEJ Nat) KEGEA:

data Binary : Nat -> Type where
BEnd : Binary Z
BO : Binary n -> Binary (n + n)
BI : Binary n -> Binary (S (n + n))

BO Al BI #X— 1 AR EN S RO LRI E AR 0L, e EINZFs—EE I RIRA . K5l n
+n B0 S (n + n) A T AR EEMIEE RS ZEERE SCHEF - E 27 ERAERTHIERR -
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BUFE, FF Nat Fe#y — bl i) s A H SR B AR i 1 45 R RO JRIG Nat HIIERSRIR:

natToBin : (n:Nat) -> Binary n

Paﬁ}ﬁg AL E REM L R RO E RS E AT — kG, RERNFELE Odd BN T E
FHIRET E S

natToBin : (n:Nat) -> Binary n

natToBin Z = BEnd

natToBin (S k) with (parity k)
natToBin (S (j + j)) | Even = BI (natToBin j)
natToBin (S8 (8 (j + j))) | 0dd 7= BO (natToBin (S j))

Odd 1EHLEAES parity & CHRIMERE, HIUERSAEE —FE.

natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;

}

e, BAPREI— main B2, TIRBUR P EELOH5H y — 2t

main : I0 ()
main = do putStr "Enter a number: "
x <- getLine
print (natToBin (fromInteger (cast x)))

IR, NTHEWEIIE, BITHEERN Binary n CIL Show:

Show (Binary n) where
show (BO x) = show x ++ "0O"
show (BI x) = show x ++ "1"
show BEnd = ""

1.11 T HAYmiE

HHr, FAIEZ RS ILA Idris BT T, ERKIEEE RG] DAL R B KA s oy I p047 9 in
IIAERREITNA, A IERIEE A A E L . BN IRE R RFMAH BT %X EDSL 7, €
RVFREF AR BIRE S RB ARG . R, KRR T T RAIRFRIEGES, FATLw]
LUFI SRR BY M3 H IERE AR -

Idris i) REPL fefit | —an4&, mETRFORIDGEMBSRETF I B, fIinERZEE STy

fBol, REJIHERE, EEOFEARMIEABRIG - AR, AR T EXRgmEaSET,
SRR AAATAE Vim| A LI A5 - [Emacs B E AR AT -

1.11.1 7£ REPL ¥ %5%R

EWL%@T#%ﬁé,ﬁﬂ%ﬁ%ﬁ%ﬁmoEM%?%WM&%@%%E%%%E?H&oE—
] AWk

(Y (T51 (4]
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Wt Ul B ERARE PR ETrfr gL, Remt—MInEFAER. 8haHd
A —FUE S RS

(e (751 [

% REPL BUIN#EES, €02 idris --client fEJ5 GEBI— MR, ZHREZ NI REPL
Lo B, WRBAERALZITE REPL, BLAT LABUTIX LR ai é

$ idris --client ':t plus'

Prelude.Nat.plus : Nat -> Nat -> Nat

$ idris --client '2+2'
4 : Integer

SR G & T LUR FH I ARR I 5 G B & R SRS B NG -

1.11.2 ZmEms
:addclause

:addclause n f M4, 45N :ac n £, ENE o ITHEARIMREL £ O —MEMOE XL - a0, #NE
94 1T IR RIARES
vzipWith : (a => b -> ¢) ->
Vect n a => Vect n b -> Vect n ¢
A2, rac 94 v21PW1th SR
vzipWith f xs ys = ?7vzipWith_rhs
f%\_ﬂ‘%ﬁ%ﬂ%m%%?ﬁmr% W, DENVLEL S I MBS EME— . TR DUR T X 45 H
e

%name Vect xs, ys, zs, ws

EFET Vect RABEHIZFRIZR x5~ ys~ zs~ ws MIIFHREE -

:casesplit

:casesplit n x 1%, HEHN :cs n x, BFF o THRAZE x O NEMREHZIERX, HHE
BREMET— ﬁ(f&“ﬁamﬁﬁﬁﬂﬁéﬁfm%%ﬁo Blan, HMWE 94 7T IRIIRS H
vzipWith : (a => b -> ¢) ->

Vect n a -> Vect n b -> Vect n ¢

vzipWith f xs ys = 7vzipWith_rhs
AL ics 96 xs A
vzipWith £ [] ys = ?vzipWith_rhs_1
vzipWith £ (x :: xs) ys = 7vzipWith_rhs_2

A, HRAZE xs %&T}%%EET 0 x :: xs WIMROL. SZAI—F, ZIREEEUE A BRI
Mo HEAT (FH :est) HPXFEHFRDF—1TH ys, B2HEEH:

vzipWith £ [] [] = ?7vzipWith_rhs_3
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fgﬂ A& ys IR T 11 X—MEW, HH Idris KB —MEEERIBN y o0 ys &FE—E
FEIR

:addmissing
:addmissing n f 1%, 45N ram n £, BHE o (THIREL £ BWMEEEEZTERABORING - F]
w, & MNEB 94 T IRAIIRES R -
vzipWith : (a => b -> ¢) ->
Vect n a -=> Vect n b -> Vect n ¢
vzipWith £ [] [] = ?7vzipWith_rhs_1
HRZ, :am 96 vzipWith &45Hi:

vzipWith £ (x :: xs) (y :: ys) = 7vzipWith_rhs_2

B, EEBINFEZRMENFER, REERTHEONG, FHERT 2B -SR] -

:proofsearch

:proofsearch n f i<, 465N :ps n £, CIXEETIEIEER . FRELEME - BIFHAH X
P R BRI AR N o TN £ B —NME . Zar S LUEZ — P AER &7 (Hint) 51
. WERA AT Z BRI RS R - FIan, I 94 T RIS

vzipWith : (a => b -> ¢) ->
Vect n a -> Vect n b -> Vect n ¢
vzipWith £ [1 [l = ?vzipWith_rhs_1
vzipWith f (x :: xs) (y :: ys) = ?vzipWith_rhs_2
AR 2, :ps 96 vzipWith_rhs_1 &45H:
0
ERETIEZRFVEEXNKED 0 B Vect HTHER, M MEZME—HIATHE. R, EHXEBR ps
97 vzipWith_rhs_2 Bsf o SE R OB U —Fh AT g
f xy :: (vzipWith f xs ys)
TRELIEZRD vzipwith #IH PRI KA. HERME— EEUE (BELH = ) 5 B
TCRMRBLIN o, MHEICHIME—FEMER £ MAT x My &5, Wﬁaﬁ’f’“fﬁ/ eI T

&

:makewith

:makewith n f 1%, HE N :mw n £, EARKBEIN—1 with \NAJ. DLZEIH parity Al &5
10 174:

parity (S k) = ?parity_rhs

A2 :mw 10 parity &% H:

parity (S k) with ()
parity (S k) | with_pat = ?parity_rhs

1.11. XEXGHE 51



Idris 155 308, R 1.3.1

EHRATE S _ AMEE parity k, HH ics 11 with_pat iy with_pat FIESL, BaBE LI
=

parity (S (plus n n)) | even = 7parity_rhs_1
parity (S (S (plus n n))) | odd = ?parity_rhs_2

ERRILIFR D MIEAL T % ( N456052 plus THE +) « WOTLBEEEMELT, FHLEAGRE
6] R PP 51 R /R AR R U R I 2 A AL AR = DL A K 3

1.11.3 Vim X BER%EE

Vim H)G H AR (R /2 SEANGEE, I i ST IR B A R B BRI SR - X E SRR R
RN grtEas oy @At T, B—FRMEERTHZMIX.

o \d f#ff :addclause 21T B Z T IRUE 3L -
o \c f#ff :casesplit FIEHRLHIZEEHITIEIIFS -
o \m i/ :addmissing FIEIREEHIZ FARINEDHIIBGL -
o \w f#H :makewith SN with MA]-
o \o ffiffl :proofsearch Vi IERAEZRHKMARIEITEHILT -
« \p f#H :proofsearch MIEMTINAIFZ RV FIEIER LI HOEIRAL RO -
E— LR AR E S S RERNHT S
o \t BT (RF/ATIE) ZRHIEE .. MmE, B2 RRHE LR UM R .
o \e RREEERERFX
o \r BEFTINEGE X FHITRIINE .

KR T4 AE Emacs AW « HEGHAS SRl ] idris -client DU EEEHIT A
NI -

1.12 EETE

Idris ZHF A Z M AR LI ARG €18 S (Embedded Domain Specific Language,
EDSL) ['| - AT A —F77 2T R do i¥E . A—MEEN T Xt O EEHITY R .
FHEATH, FATHA T WA BRI syntax MS dsl G-

1.12.1 syntax #LNI

BNICAENT if. then. ..else Bk T, RMEHNENER . FHE, FATTLIE X —1 Prelude
A (E7E FEM (éat 13) —THHBLET) -

! Edwin Brady and Kevin Hammond. 2012. Resource-Safe systems programming with embedded domain specific
languages. In Proceedings of the 14th international conference on Practical Aspects of Declarative Languages (PADL ‘12),
Claudio Russo and Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg, 242-257. DOI=10.1007/978-3-642-27694-
1_18 |http://dx.doi.org/10.1007/978-3-642-27694-1__18
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ifThenElse : (x:Bool) -> Lazy a -> Lazy a -> a;
ifThenElse True t e = t;
ifThenElse False t e = e;

&G syntax B URY R OIETE:

syntax if [test] then [t] else [e] = ifThenElse test t e;

syntax 75 B A2 SRR T EERUN), A IR T AR AR O AR -
o KT — FEXHEN if - then Ml else, ELTEBMAIFMRAT o

o JE& LS (Non-terminal) — (LT HHEESN, A [test] - [t] il [e]l, EAIFEREERE
o NREGMBITE X, XERAXNNEAETZFEAEET B (WA ERES R ER) .

o B — LUTRIESHN, ERRAEL MBS ERNST -
o fF5 — LTFEIEN, flan = EWAEEEN P ESRET, FII0 "let" B "in" .

EEMMNEARRGET ELAE S E2 0 SEREY, HRREFLIENFHNZRAGEEERE .
FIRFE AT LU, AN RAE— DA FE — 1T AR DR IR, R4 AR TR B RA A 29 E A
(BRI, 228 . HEIGHSHENRAR)  MNATERE CZEIER, BB AER - Fit
NIERY R

syntax [var] ":=" [vall

syntax [test] "7" [t] ":" [e]

syntax select [x] from [t] "where" [w]
syntax select [x] from [t]

Assign var val;

if test then t else e;
SelectWhere x t w;
Select x t;

WA AT HE i — B BRH Oy RaeEE st (B, RegdE=CICE N a s Z2=m) el REEEW RN pattern
5y term WETEMUAII (RIBR TR0 DCED M AT ZE M AR b 77 ) A - filan, BUSBATE LT — 1 X
[B] Interval, A So FEAKE LIMRIE N/ N LR

data Interval : Type where
MkInterval : (lower : Double) -> (upper : Double) ->
So (lower < upper) -> Interval

FATAT LI pattern & X —MEEE, EEZILE oh {ENIEHIRE. H term IENRIR M — MR

MkInterval x y Oh
MkInterval x y 7bounds_lemma

pattern syntax "[" [x] "..." [y] "1"
term syntax "[" [x] "..." [yl "1"

7E term W1, 1BV [x...y] AR —IEA X5 bounds_lemma (FJREHEMHL) -
e, EEMNASIA R —MEERR . G0, for TEMERUGEINHHE IS
syntax for {x} "in" [xs] ":" [body] = forLoop xs (\x => body)

main : I0 O
main = do for x in [1..10]:
putStrLn ("Number " ++ show x)
putStrLn "Done!"

ER, BATAERA ) 58U x TR— 1M CHENEER, EAEAMESEER . BIDLLE in BE 7515
. BRAERRET -
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1.12.2 dsl it

Bl RRTIIRERER (¢at 35) — 17 P R BIBREAT R MK A R AR 7 B 1) 7 -t i
SRR A A — 1 BFriEE MHRBARSG, RIERE RRMREFATHERR, N5 i Xy
HERERT - WIEXMAE, BATA LGRS 3 P siae 40317 7 2t 1] )T -

SR, EAREE R E R LA S B R - [BAE— T Expr 405 IR SREET:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var Stop) (Val 0))
(Val 1) (Op (*) (App fact (Op (-) (Var Stop) (Val 1)))
(Var Stop)))

AT — A IO, B Tdris 3248 7MEEE R FHAXM HEINES HES TR

mkLam : TTName -> Expr (t::g) t' -> Expr g (TyFun t t')
mkLam _ body = Lam body

dsl expr
variable = Var
index_first = Stop
index_next = Pop
lambda = mkLam

ds1 Btk T B IEEME R W AE HARE S P RRE) - X B expr BEH, MRS U
) Var #43&%5, {1 Pop 1 Stop K& de Bruijn R5| (A, HTZEASGHHAE, FUELSIHES
MDAGRTE)  THER A-FIANEE 2 HBIFEN Lam M35 E% - mkLam BREUR R FH A B — DS, ©
PN RN T o BT AT LUBIE XM FORE R let SIKMIRERITETE - BIFER] LU fact
HRCNHEDXFET
fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))

TEX N HFHIRRA S, expr A T F— 1 EWEBAIFA . HATFTUMASERS, WL TERE
ﬂf‘*fgz

(<*>) : (f : Lazy (Expr G (TyFun a t))) -> Expr G a -> Expr G t
(<¥>) f a = App f a

pure : Expr G a -> Expr G a
pure = id

ER, ELTMN Applicative KU —Hy, HINSIERSICIEZEHEEEIFN 45 <> Ml pure,
FIXRRR (ad-hoc) RIUHIE B AVF o AR AT LLF AL
fact : Expr G (TyFun TyInt TyInt)

fact = expr (\x => If (Op (==) x (Val 0))
(Val 1) (Op (x) [l fact (Op (=) x (Val 1)) [] x))

ER AR E R BH, DUGHHIERAN], BT Z= AT LAt —2:

2 Edwin C. Brady. 2011. IDRIS —: systems programming meets full dependent types. In Proceedings of the 5th
ACM workshop on Programming languages meets program verification (PLPV  ‘11). ACM, New York, NY, USA, 43-54.
DOI=10.1145/1929529.1929536 http://doi.acm.org/10.1145/1929529.1929536

3 Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction Concurrency: Using Dependent Types to Verify
Implementations of Effectful Resource Usage Protocols. Fundam. Inf. 102, 2 (April 2010), 145-176. http://dl.acm.org/
citation.cfm?id=1883636
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syntax "IF" [x] "THEN" [t] "ELSE" [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) [] * %)

1.13  ZLI0

TR, BATIHE T SR s
o B3I BBAS5BIASZE
o YR8 (Literate Programming)
iE SR R RS SMEREEAE
o MO
KRS (Type Provider)
URBAERL, LK

2 E% (Universe Hierarchy)

1.13.1 [

EMNCENIREASE T, EAVFZRAEBHRECE AR HARRSE, Fin.

index : {a:Type} -> {n:Nat} -> Finn -> Vect n a -> a

R[5 25

EEEBELT, LSRRG SRR SE, MEESE E N T EREGSME, SOl HEEIE
BHSRAEWT S50 Bla0, AR head HIE XFEIUEIAYFRIESS:

isCons : List a -> Bool

isCons [] = False

isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ =x

WNERAT DIE SR NS RS, AR T EREREME, S E T CHEENERIEN . IEMALLE
B, BEEXSH AT ERE AL - FATRF head E XN:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: x8) = x

RS HER N auto, KR Idris RIMEEREG ERAXNMERETE . EXLRLUTIFZ
it

o FibAE, BIRRIERR), AR HER % T let 1€ -
o IR RERMGES - FEMNESH, MR IR R HE 100 ZHRE -
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o WRERMABEHEE, NSEEH TR -
o EATHRE %hint FERERY, A HROR EISRBYH K%L -
FERAFNEARRBRILT, E2aREF B s .

head xs {p = 7headProof}

R R ZSHL

PrT ik Idris HEhERAERHYESS, FR BN LLEERT B ANEREASE - £ Idris B, 3]
FILUH default EMREOXIFE . RECEZEREN T auto HEMEIEMRI, S REREH B
IFAEHBER - 2RI, ERBE—ITEERLY, AP OEANHELARESERS -

GRRBANTEEAT S n DIEPFLREL (5B 0 DEPFRECE S 0) , HATATLE

fibonacci : {default O lag : Nat} -> {default 1 lead : Nat} -> (n : Nat) -> Nat
fibonacci {lag} Z = lag
fibonacci {lag} {lead} (S n) = fibonacci {lag=lead} {lead=lag+lead} n

EN5EZJE, fibonacci 5 ENT fibonacci {lag=0} {lead=1} 5, EZIREIE 5 MEEFAHE . 1+
BEREALITIE, HXHFAR default FEMHMAHE, HXETEHAERR . W, default AT
{78 IR R AR T -

1.13.2 e
Idris HF00E pasisi | EEERETIMARBITEN, © g — LB 1E Qo as — 4
KA SRR T RERERME IR TS . IR RO 0 BT

implicit intString : Int -> String
intString = show

test : Int -> String
test x = "Number " ++ x

WE, BNTTERF—D Int WINEI— String ZJ5, AFFEFELHLREL intString AT LR x F#t
string, W test EXHIRELEIEMH) - FRASRALHME TR, AAINLET inplicit
Ry, BRSOy AfEEZ— 1 BXSHL-

KA NEAE RSN - MR, RIS - e L, TR KA

FER R AP | W AR, AR SRR EDSL FTUKE, BCE RO B4y -
XEIRBIEE T ARHRE T -

1.13.3 N E4EE

#1 Haskell —F¢, Idris 3C#F C#ERAE - WRFEDUFRT RAS 1idr, IBAE ST S MO IRTE S
o TGRS, BT LURTS > FFRBIToh, BrEMNEE SR - Flan.

> module literate

XE—TER, FRFETH

> main : I0 O
> main = putStrLn "Hello literate world!\n"
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BEANAIRRSID, RFPAT (B> JFk) S5iERtT (DMEREEFRITL) ZELmE —217 .

1.13.4 SRR EEH

FEGRESEE T, BAVEHFZMEAINLE, FAESBRERG . ARG ML &% 7 CHR - F
79 Prelude )—%R5y, Idris $R 4t TRREMINEREGED - BAVEERER —EH C F gec HIFEFHIA
We BIE, BAPRE-MEIERE, Tl T HAIREB L RINTEE.

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

TATE—1ES C HIRBIEEEXSN - 95)5: int- double-~ char- char*-~ void* f void. LA FER
LR T eI R E Idris 27 BEHIE:

interpFTy : FTy -> Type
interpFTy FInt Int

interpFTy FFloat = Double
interpFTy FChar = Char
interpFTy FString = String
interpFTy FPtr = Ptr
interpFTy FUnit = ()

SRR R — A AR RIALR B R AR, BT ISRy Idris KA.

ForeignTy : (xs:List FTy) -> (t:FTy) -> Type

SR BBV EAN SRR, R ForeignTy M3 T —1> 10 K&, 0.

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Type

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> I0 () : Type

HATES HREBUK T 2 - —RINSEORBEALR EEME T — MR EAN - NG
mkForeign *RZ bR AL A AT H N — 1~ FT HH Idris VAR YKL
data Foreign : Type -> Type where

FFun : String -> (xs:List FTy) -> (t:FTy) ->
Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

R ARE nkForeign REMSHL ST 2R I LA SERERI SNER RSO - B0, putsStr fEA— 1M
BT RS E LHISMER R AL putser FIVEH], HSEHLANT:

putStr : String -> I0 ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

include 5% #3184
HNER R 23 B Idris F1 C BUERIFR R Z RN R H, W EERNIE N C MEWIAH - EFE XS
TR BRI E < SKOCHRE AR SCHEBE RO o FAT AT DLE S DL R 2ok SE R

e %lib target x — libx | =i QH\%EW?‘U C, EEMT M gee %
#o-lx & . WRBERHR Java, ZE S BB maven KW K R E A

groupld:artifactId:packaging:versioneo
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e %include target x — fHFLICHFEI NG EM G BIRFA x-
e %link target x.o — fEfEM%EE G B PR 8ERE B AR 301H x. 0.

o %dynamic x.so — BISHEEILZRIMEES HIR UM x.s0-

TS R B0

—MORUL, Idris fEREES (FTREKEFR REPL) A4 10 W65 BRitbz4h, EBEASAER C R
i, A THFRILEG, FI %1ib- %include 5 %link EFARRM - 10 &35 FFI A
fEFFFAR REPL i< :x EXPR RMNGK, 1M C FERNEL :dynamic AT @Bl %dynamic 543N HIN
FEfRER T - Flan:

Idris> :dynamic libm.so
Idris> :x unsafePerformI0 ((mkForeign (FFun "sin" [FFloat] FFloat)) 1.6)
0.9995736030415051 : Double

1.13.5 RAIRALIS

Idris RAURALES, REORE Fy RRARMLEE, ERLEHINMWARAS Idris /PR [BER] -
flan, aE—PFRREIEERN (Schema) HIRE, M—PEXERETHEN, RIURESTLE
PEAT R BIR E I SO SC R 2 AR

Idris ZRALR LS8 FH EE R Idris FIHUATIE SORBAT 10 MR RBUHEE IR « 2R E1E N IFUR T
WIH B RE . B LEDRE, W TREFLTRE AN, THALUEME, HENEBTUE
HEE—HER, HFEN IR ESERET -

KRR A BRIy R . ZEME, EHH %language %

%language TypeProviders

FARM ¢ iR P At EH 10 (Provider t) BIFRIAI - %provide iR et Y
BEREPITIZES, IHRESERFES —12F L. BIEFH - TREOFFRERE - REFEH
%y fromFile AT BRI M - (IRZ I HEFAT & Int AL, IR EMSRME Int KB . B,

EMt et vat KA.

strToType : String -> Type
strToType "Int" = Int
strToType _ = Nat

fromFile : String -> I0 (Provider Type)
fromFile fname = do Right str <- readFile fname
| Left err => pure (Provide Void)
pure (Provide (strToType (trim str)))

BEERAN TR %provide 54
J%provide (T1 : Type) with fromFile "theType"

foo : T1
foo = 2

WHEA N theType MISCIFHHIA Int MR, A4 foo MIRMSRE Int. HM, BLE Nat. X Idris
BENZIEAE, THLSKREMIIIRMIESFZER fronFile theType FIFEAHN 10 (Provider Type) -
BECRUNTIZRMES . WRHELERD Provide v, A4 T1 MAWE L vo BN, AT E— 18
%o
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HATHEIERTY Provider t ELHIT:

data Provider a = Error String
| Provide a

HANTEL NS Provide i8S [ - Error ifas AVFRAIR MR EEHPERER, AT HEIRG]
ﬁﬁglmﬁﬁiﬁ%ﬁ% FINE AR BRI, ARSI E R SQLite 4558, AT NSMIEER]]
HRER -

1.13.6 L. C N%mFHR

Idris FIBIAGRIE H IR Co Bl LUT i & G i

$ idris hello.idr -o hello

$ idris --codegen C hello.idr -o hello

AU LS HRER, EaEM—MENE C IS, BERRIERS N hello HIRATHUAT UM -
HEFEMK C R, FiET LIS &g

$ idris hello.idr -S -o hello.c

I RAMAL, EEHETER flag ¢ FFHES

module Main
%flag C "-03"

factorial : Int -> Int

factorial O 1
factorial n = n * (factorial (n-1))

main : I0 O
main = do
putStrLn $ show $ factorial 3

BAEGEAER C USRI LG R, Pl gdb 7 Idris B2FHFIRBCEIRES, 16 Yflag
C HIFRLSKEHHANT T, WHHIR:

%flag C "-g"

1.13.7 DL JavaScript N%#iFE BFr

Idris A] 4 RCRERGIZTTAEN W28 LA NodeJS ERPIATZH R JavaScript IS . E R LA FFI 5
JavaScript EXFITLH. -

(W ELE

SRS B ML) B bR - SR RGE S EN Bas s TR, IBEA LR i

1 https://github.com/david-christiansen/idris-type-providers
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$ idris --codegen javascript hello.idr -o hello.js

PRI R UG EE JavaScript RIBHAREERRAZE] HTML -
R NodeJS RIS = SANE o Idris &8 — 1] BV node :21TH) JavaScript XA -

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world

#ZE%| JavaScript IBERKZREH console.log ¥ ARG A% stdout, HIMEZHINEGTFHTH
ZJE N EHAT o AT AANSAE NodeJS RIGE R HIN -

fH FFI

BWME—THRAMNA, BITFESINPHEAHITRM - AT AT E#RIE DOM 84 £ Ajax 15K .
HFRLF LA FFL. BT A¥5 JavaScript APT TR EE, FEHIFANTFEY B FFI LU REUE NS5
BN

JavaScript FF1 () TAETT =05 — M #) FF1 B A AR - EFHAMEZERERNTNSHEERA—&
JavaScript FLEH -

BATATLMER JavaScript FIRIEINE:

module Main

primPlus : Int -> Int -> I0 Int
primPlus a b = mkForeign (FFun "/,0 + %1" [FInt, FInt] FInt) a b

main : I0 ()

main = do
a <- primPlus 1 1
b <- primPlus 1 2
print (a, b)

R Un CTERE TN 0 JHIARIEE n DA MSMBEEIIZE . ARFTE - ED SMAEMER, 1HHE
A S

R R EUR ASMER R B 2 AR H AL o BORTNTABZN JavaScript 15 LUT R

function twice(f, x) {
return f(f(x));
}

BARFATTREEXBEAN—1EE £ (FRATATAMN twice A £ A NMERTH R, WHR JavaScript
HREWESEIMALE) -

R4 JavaScript FFT — R0 FFunction FIARPAR, EREGIEMER KEUENSE. LT REIL
W37 JavaScript FREA T twice FHRFLERIRERE] T Idris BFH:

module Main

twice : (Int -> Int) -> Int -> I0 Int
twice f x = mkForeign (

FFun "twice(%0,%1)" [FFunction FInt FInt, FInt] FInt
) f x

main : I0 ()
(8yNeéatezgeam)
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(cznayLéat)
main = do
a <- twice (+1) 1
print a

AP 3, IEANIATRTEL -

A& HNBH JavaScript U

HEBERENEH JavaScript, MBI RERZE & HMEE, 503881 FFL 8 A GEE /MR ST R R
o JavaScript F1 NodeJS RIGERZSREWSHEAE %include 8L - HIERE JavaScript F1 NodeJS ZHA
[FARFS A g b FR Y, R IRFRESE AR R B AR - XL R R IR AT IZER—A> Idris Y830 537
H JavaScript F1 NodeJS €& NFIFISCHE

R G SRR B BN SN Y JavaScript ST, AT LGXFEML:

T NodeJS:

%include Node "path/to/external.js"

FLAETN A% A

%include JavaScript "path/to/external.js"

L8R S SIS I B A SRR B THER - WP T EEL, ARAT LAGEA ipkg SUIF AP objs IR js I
BSFERST, FHE:

%include Node "package/external.js"

Idris B JavaScript F1 NodeJS Jgimith S EMHALE B M -

£1% NodeJS t&HR

NodeJS fCURA A AT LUEIT %1ib FESHR AL SR -

%1lib Node "fs"

L 2WMIFERLLT JavaScript:

var fs = require("fs");

IR R JavaScript

Idris 274 3EH KB JavaScript FAREHR - IR, ERAIRIEAEN Google f closure-compiler 4i
o HEMERERTTH, A closure-compiler BT HESRIHRIE, ESM—ER2 NN SN
RAEVEER - Idris AT AR 0 A X AR, smFVEWAER A Idris S5 JavaScript N B8 FH

g

[

1.13.8 EfHH:

HFER AR T, RZIMR, BURR BAREHERE . filn.
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funiverse> :t Nat

Nat : Type

funiverse> :t Vect

Vect : Nat -> Type -> Type

B/ Type HIRALNE? AURBATAN Idris, EXIRE:

*universe> :t Type
Type : Type 1

W Type #'E HOHIEE, IRLATLSEN Girard Fie MFECN—EE, HHAENTEEREYN BX
(Hierarchy) (2% &3, Universe) :

Type : Type 1 : Type 2 : Type 3 : ...

2 RAE MR (Cumulative) 1), HEiEYL, WHRE x : Type n, FATHFLIE x : Type m
% n < mo MRRKEGERLI TEMA-ENE, EMEEROIMEAFFFRE— MR . — Bk
Ui, BFATAEOE, EESERTLRE (&) TR

myid : (a : Type) -> a -> a
myid _ x = X

idid : (a : Type) -> a -> a
idid = myid _ myid

R myid MHEIHE G 8 2% SEE2BZERF HIA—EER, B nyid B PSHARID Type, WHRE
RENMAZIES, IAETHIAREIRT PrEsRa%) -

1.14 J B

R Idris WEMEZER, DRI GRRE A — Br R E, T Z R JEIREL
o Idris PJu5 (http://www.idris-lang.org/) LLZFERREES| AR -
« lwebchat.freenode.net £/ #idris IRC i -
o #F (https://github.com/idris-lang/Idris-dev/wiki/) FHBEZHPREMFE, FlE:
— https://github.com/idris-lang/Idris-dev/wiki/Manual
— https://github.com/idris-lang /Idris-dev /wiki/Language- Features
o BEXRITHMPH Prelude % samples H3X - Idris KRG A 7ELIRE:  https://github.

com/idris-lang/Idris-dev| o
o Idris Hackers Mufi ERIBEATIH: http://idris-hackers.github.iol -
o RS Wl P AP) o BRTATREHRIE B Idris -

1 BEdwin Brady and Kevin Hammond. 2012. Resource-Safe systems programming with embedded domain specific
languages. In Proceedings of the 14th international conference on Practical Aspects of Declarative Languages (PADL ‘12),
Claudio Russo and Neng-Fa Zhou (Eds.). Springer-Verlag, Berlin, Heidelberg, 242-257. DOI=10.1007/978-3-642-27694-
1_18 |http://dx.doi.org/10.1007/978-3-642-27694-1_ 18

2 Edwin C. Brady. 2011. IDRIS —: systems programming meets full dependent types. In Proceedings of the 5th
ACM workshop on Programming languages meets program verification (PLPV  ‘11). ACM, New York, NY, USA, 43-54.
DOI=10.1145/1929529.1929536 http://doi.acm.org/10.1145/1929529.1929536

3 Edwin C. Brady and Kevin Hammond. 2010. Scrapping your inefficient engine: using partial evaluation to
improve domain-specific language implementation. In Proceedings of the 15th ACM SIGPLAN international confer-
ence on Functional programming (ICFP ‘10). ACM, New York, NY, USA, 297-308. DOI=10.1145/1863543.1863587
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http://doi.acm.org/10.1145/1863543.1863587
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CHAPTER 2

W ERRE (FAQ)

2.1 Agda |} Idris B BA—FE?

A Idris —H#, Agda R MHHRBREKREEIES, HF BRI . E1I# RS ET
AUEM « A, Tdris —FIEELINE TomB MR T, MdF Agda MEAEHIEA - HI, EXXH5S
ROUEM C P ERIEN, DIKATEN EDSL  (SEfFEEE) MiESHE . Bl EERMN
GRetiE, FlanEn (REITRE) Ml do igi%-

Idris SCRFEMPESE (BOIA C M JavaScript, FILUEEIRMAINES) | E 1 C WER, HHIL
NN H L H BB S Hs T R Y-

2.2 HAIMEREER? B RESIR?

FHE R API U EAE R DU 51 H -
AW, Idris FERART SMINE QER T AL . REEREHRN T 0
« REPL @4
— fEF :apropos I ER SURYHN K A4 I SOUA -
— fEF :search AARYE R BHL R KL -
— B browse KN HLAE & T2 F P HINZ -
- f#H REPL #JHBhMEIIRE -
o {HR grep 1E libs/ "PIEREIFRS

MR R IME AR, BRI ERTE—L . DR AT LUEMBI ARMOXEE . Idris I2HE T &
INE SUERTETR, B OUE AR (doc 4N, FAELMAE) HTML APL SUHEHS1H -
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2.3 Idris BEERTIEA?

Idris ZERNITTE, FRFERARBEEIT LB REr, SRS REMEEAN F) T2
TAFHATEFRRS . Bit, FEL77mE P e ahs, Wi DREE . HAL A2 Idris, 3
TTHBIREE BIRARMIL S BZ ARG - B, FAIAEERBES TR RIS !

ERL, BATHEFRVGRR B Idris @R AT, BF (EART) BOMIESS . sl
I RGE GFRREEALTE)  SREIFYE JVM JEinsss .

2.4 Dy \dris H T KERME, AHEMNRER?

Idris R SR REFER N THREEFHIMIERE, FHRERKPERZ MR RE m B35
UEARZACRS, A& IRah DAL MZE 500 « BbAh, Idris FIRALRGIRELL B ARG T FRAE MERR
2, Rttt eesE S MEEE T R EREREMNES T, BE 1 Int REME:

thing : Int

thing FEBTIRIIMFRE? TR MERMBRAARFOREE, LRI TR H BN
P EOTRER? 7E Tdrvis 1, FATHRE R BARAGHI X 73 AT

thing_val : Int

thing_comp : Lazy Int

iXH£, thing_val FLEEFALR N EMRA) Int, T thing_comp NIEZE Int FIITHE -

2.5 MEMEFE MBS S IAY

TRAT LAUFHAFIREY Lazy REDRBIEIFEHIZEN - FIA0, Idris H) if.. . then...else... KW &N
ifThenElse BREXIINH - EFEEFIAR/RIERBOASEILAH

ifThenElse : Bool -> (t : Lazy a) -> (e : Lazy a) -> a
ifThenElse True t e =t
ifThenElse False t e = e

t Ml e KR Lazy a TRINENTASHEFRERPORE, HHEN, EIREERER-

2.6 REPL HLSLHIR{GTTHBIEBBIA—HEN, XEES L= =7

1458 & RBEIIES | Tdis ORI HIT VB, BN SEI0 . EREN, TR2H
Saee (AIREXZIEHER TIrETRERMA) RARTESRE, DUHORRFF RGBT HEN - 48
FERTRSRESE T Idris O —E 5, B Haskell 485, #%H(ER HOAS (Higher Order Abstract
Syntax R HRIETE) KRR . BT CHPTA RIGEAATERIIE, 57 R IR R (8 SR S
?f?g?%%?T,ﬁﬁEM%%ﬁﬂﬁﬁ%%i,ﬁE§ﬁ$,E%&ﬁHﬁ@ﬂEﬁN%%ﬁﬁ
DEENGIES

HIRA)E, REPL (EHIRIER REMMS . BT HASLHSN (BTN UAKRES) | EERR
Wi (Term) WAfTERAEGGE R HSRERHBIEFHH -
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Idris> \n, m => (S n) + m
\n => \m => S (plus n m) : Nat -> Nat -> Nat

Idris> \n, m => n + (S m)
\n => \m => plus n (S m) : Nat -> Nat -> Nat

2.7 VMEVHANREAERTY B IS B ek R 2
RGESRT R W AN G TR ANET, HEMEARNATENSE, A s TR
WENSE - Bl

append : Vect n ty -> Vect m ty -> Vect (n + m) ty

SR 0 m A vy REAGER . A FERE A TR L, AR TR B, (R
VETA

ty : Type
ty = String

R4t oy &2 HAME append & L FRERHERIZEL, MAZLL append HIRFSEN TIRFIAE
H:

append : Vect n String -> Vect m String -> Vect (n + m) String

FATHANGE, REFEE LTI, AZEAE append HIRIUHAE A FIPLLEFE G0 E M2 T -

WRFAEAERTL R AN RS T, IPAEWAESR. R UERBREE, Fl, % ty £ Main
a2 251 R E S, AR AT PUXARAL

append : Vect n Main.ty -> Vect m Main.ty -> Vect (n + m) Main.ty
BeAh, ARIEF LUERA LN PRI LIA T, ERAZHERGE:

Ty : Type
Ty = String

append : Vect n Ty -> Vect m Ty -> Vect (n + m) Ty

HIRAE, MRIRITER — DB FRERERE S, BARE ARG F I LR b R -

2.8 XWREFHARREE, AR Idris KRR ERATREATZE?

HTHEHLIA RN AT A BV, Tdvis JB W TCIEHE — DM RT R G 2T o IR, FofiTa] DIHE H Lo
AV IEARET o Idris A [ KPR IR (size change termination) | 54 M REGR HF] 5 5 /Y
HIHHE . EREEL BOLE-NSESIEEIEARBN -

o Idris SCRPAH BBV R L
o Ait, BVARRE ERIPTE REUL IR SRR o BUAh, Idris ASFEFEBTRLA -
o BT ENIES, Idris 2 EHIEE LHDREASE, DRGNS E AT RS

B Hlan, k ZEEEL/DNT S (S k), BN k&S (S k) BIFIW (subterm) , 2R (x, k) 7F
WBELEEAPNT (S k, S k) o
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WARFE D E L ERREL B Idris NME, AR LIS PRI, B #H assert_total

<<<<<<< HEAD Idris BERfERE H MY =——=—==———=a——e e

REAT, BUMNKOLREXER A - st Ak, SEHSGT B3R R —TURE MER TIE, i
USHENT SR LA & POSIX WRERIER T R -

2.9 |Idris H2HWEZEAN? Type ZRERAH?

Idris H7%H 23 £ (Universe Polymorphism) , TM2HH 2B EZR (Cumulative Hierar-
chy) , Ul Type : Type 1~ Type 1 : Type 2 %% . BEMHEEZE, & x : Typen Hn <=
m, M x : Type m- REAIEHIERE Idris #S, HEEWHENMIEE - 4T REPL @< :type
Type 1 DUSGHEI MR RTTEE 2, #HEE— 1R .

2.10 A% Idris FH Double AN Float64?

s b ¢ FIRZESEA DB H Float Hl Double KFE R 32 fIF1 64 ML S BSHANES, 0
Rust F Julia #8FF46:E1E IEEE #8258 ME (IEEE 754) BT ZMTE T - T R EEFIRUR B 8
A Float32 fll Float64, H AK/NEREIZFHIA.

HT IR EREARHERMALE, M Ldis FIJTAZEWIERE TE, FHit Idris XA T C MASHIZYE -
WU PR Double M TR NUNG B AL, T Idris BUAEILASHF 32 A R 8L

2.11 -ffreestanding s&M&?

FEFXN BEFHE B CWEMEFLRE, A H freestanding W& 1TSHORME Idris — il
. BHMESERNLZEERRIMN, EX THE HE S REIEEREH . SFALS
(i, IDRIS_LIB_DIR B EFHE X E NMENS idris A HUT XX FFAERT Idris FERIBRZ -
IDRIS_TOOLCHAIN_DIR IfMEZ &AL, WHRIEE T B, Idris MMSEZKE T I C HiEss-
fi4n:

IDRIS_LIB_DIR="./libs" \
IDRIS_TOOLCHAIN_DIR="./mingw/bin" \
CABALFLAGS="-fffi -ffreestanding -frelease" \
make

2.12 iU [idris] B4 )L 0_07?

H — € I L E A ] GETR ACRPE AT W /N K ikl . AREER AR, B CAENFAE L (F3)
e )

2.13 AL Unicode BAERFAR?

NERA ABNTARIZLSHF Unicode #IERF IR
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o EXELEA (RREFHINABRE, XAMRER) . REHESTECHOCREAL, -
W RDIAFIE G L HIN -

o HAREMEIERERAFE « £ —E%5) Email %P0 - £ TR IRC % 4~ MUK
Web {58 &< B0 A #R & tHETE 2 ] A -

o AMERAINEFEEFREHAE (EAE!) | AMAEEAEMRINERBTHETE, A
"BELAHEE .

o ERZFHERERET - BESNE 0 O MSEMIRZFM, FARELKNEHENE SHES
T.
WEREAE S, Unicode HAEFFREILAII B R R EE S, IR 1hs2TeX tHEE. WIF/LFEFBOHEL,

B REEIF N T, BIRMEEFH N EAEE L - RMERT, Idris N HERIEFRMER Unicode

V=)

e
X PLESE Wadler €7 7 TAEH B9 -
REZRFET Edwin Brady Xt #Ei£153K AEIR -

2.14 \dris H X HENIAR?
X H| EIdris #XHTERIFE A -

2.15 IAEWF)LEETR B MR

Github HJER A ENEE S FAQ, HARRE TR HEORFR, 1m0 HL2H B -
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CHAPTER 3

H \dris SEEUH NSRRI RS ST ke

REFEBGAR T anff A Idris B Control.ST FESLIUH ARSI RSL -

EM: Idris O C % BIERLH CCo WRIthll &fi - HIARIEIEZEAME, Idris #£X SR
Idris SCRSEIBTE R B AR SR AR He AR -

KT CCo B ZIEESM: https://creativecommons.org/publicdomain /zero/1.0/deed.zh

3.1 R

& dris| ) ZFA IEE A R RGOSR P T I R BE0E S, U REBHRIEX— A, BT
BT 2 IEMIZT (AR ERIMAMIEETT) -

IRMAETSE A, BRI TIRE, REBAFEMEB TR ST KRR TCP X R M 45 1% fbh
W, SEIFEAIRE A ARG LL X IEM A AIERD - 1A, BRMLZE Socket FIICIFX AR Z FEAl BT,
A EPIRSVIE A B, R E B E VR BRAL T4 RS A R AT, X LE 8 T DI R 2 BER
RPRAS . B, B W EREILERERIML Socket K ETHEABR L, FKH Socket ZRFHARZM “FT7F
Ty RHD o CIRESHLEIEERT DRI EE T 2 . an, £ ATM (BsiBEWL) e
SHAF, AR MEREAEEER ATM R A B S 5E ARAS N A et b

AHREFF I A Control . ST B, 'EFFRHAIRSMENEH AT AR . ZECHE S Ldris
RATHREH (HATET contrib f1) . AEARRIXILE CEAL (éat 2) HFTIR AL RGN
HIgRTE ik . ST JBEEET (Idris RANENIT &) —HFEE 13 M 14 EFTRINE, IFELZHRER
USZ S

HATAI N ST B EHE MRERBARESMMNEF - EXFHRMESTTN: F—, RIGEBFE
P A AL SC RIS RS B2, BANEBETEEIRERE ARG L IHHIREESE RS-

69


https://creativecommons.org/publicdomain/zero/1.0/deed.zh
http://www.idris-lang.org/
https://www.manning.com/books/type-driven-development-with-idris

Idris 155 308, R 1.3.1

3.1.1 Rl FEEFNEEFERS
WEHAFRAF R TRES, FERECER RS N AF . i, BE - P22 iR rE R,
EARERPERNEI N AR LY ELYE - ZARRA LT LU MRS —
o BESR, FEHIRET, FF AT LLYT LR R
o REZ, HICRET, WP TTE RN SR
FATAT AR AL S - B HAEREGE G4, 0 NETR:

login

(success)
login
(failure) . LoggedOut Loggedin . readSecret
logout

WA R AR PURIIPAT, BEEARGUIRE RER B E OBR K& Bl S ERGIREMN
B BHE REFR RE. REENE, BB e UERSLT BB RERAHR -

AT SRR B R EAMSEO A — 2t - /W, ERORBARTH AR R

RV LB E R T @& KPR A BT X R SRE. fln, ERGREEARSN
AP, R CHAERT YR iR SRR X—MREAEEER . T ERELEANERE AL
RRIBIX R, FH BAEG M BRI LR s U E R AT S8 SRS A REROE R -

3.1.2 R#H

IHORE IR A B E LIRS 0 (ST A48 FARESRIAE (éat 70)) . FIAT STrans HUER
RUORSOA T ARSI R, DL sT FISRIATIZ APIRSHAS . P RMET (HREZ RS
g 78)) iR TN R IRIRSNL, DU E B A LUlA T A IRES RS 2 (BEIRE
L

(¢at 85)) A T INMESHH L MIREHEI RS . CER T i sE LRI £ M IRESHLE RS,
LAB AR 2 TR A GO SR I R ARSI RS . &Ja (BB M2 Socket JiE| (éat 95)) ]
FEEI—MHAREDN APL MATEESFEMF T, EXIMT POSIX MLE Socket API-

Control.ST JE7E Edwin Brady| f)—F CF& “State Machines All The Way Down” HZJNE# K, #RA]
DI EARIUE « XRERR T ABRETRRZ G T, BEINRARRAR T ENTREL - &3t BLKk
S -

3.2 ST N FRERITE

Control.ST FESRML T 7EKEF A5 - LH - B ARBEBRE, DLEERECEA FREREZIT)
fE. BETEIR (Resources) FMES, AR bR TR EFUKEIEA . STrans S EKEGE TR
ER BRI AR AL

STrans : (m : Type -> Type) ->
(resultType : Type) ->
(in_res : Resources) —>
(out_res : resultType -> Resources) —>

Type

FKIH STrans m resultType in_res out_res_fn FHER R — R LIRS siE. H

W
£
$
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FillboR
o m FR—MEENITHE ETX (Computation Context) , &FEIMERAEHPHIT. EE, E
B TEIT Monad HZA, HIHELTAILL . BARU, BATEFEMHET (Monad) HERER
WA ST!
e resultType FoRIX—RINER T ERERI R .
o in_res T — DIEHUTENEZ i vl H BB IRSZ -
o out_res o —MEHUTENMEZ BRI HIIBIRY %, ERESERLS RAFE -
FATATLIA STrans 7ERERT FHIA RS ERE RS (State Transition Systems) - HT&7EZ
JE & L BEE (Resources) , FIEMRFILUEIREEM B FAPRE MR ER - Bt A e AT

Ui (in_res) FIFIHBUR (out_res) , FATHT LAFHA R F MEHUTHIRTH %4  (Precondition) #1
IR T RE et R KRS RGBS (Postcondition) -

AFTLL—2E STrans WAL/ MEITIFER, BREWMHBITEN] . HADENET sT, —PREFHIEEL, €
FELLE B TTaT B A oty RS ) e B PR SR A

SRBIETRERE

ST AT HENHE, RFFZE import Control.ST it (A idris %% -p contrib ZEUKIARIN
contrib -

3.2.1 #hk: #AE State

STrans HRELHIRTUAERE T E AN —%H Resources - HEIHIE — RN var IR (label) , &
e HEEREFSI ZTIE, HiEid 1abel :::  type M ZHEIRATIRES A“Resources* 5|
*z.

fian, DU EREEIEIA TR N x, KN State Integer; Hith BURAIEALTH State Integer :

increment : (x : Var) -> STrans m () [x ::: State Integer]
(const [x ::: State Integer])
increment x = do num <- read x
write x (num + 1)

increment BRIFHIT &

increment MIRAVHEARE HITAR, HAEAMHH BRERE RREMFR, HLEEE T k-
HAME ST BEEFORIREE (¢at 77)— T A sT RN, 2@ —FEMBETERIREE .

ARECET read BEURIR x PAEMERIE, FFH BEHERA vrite FRIE x . MEHIT2FE
read fll write fIZRTY (I [STrans MJRIEHEIE (éat 76)) o FRATIL AT LLGIFEFIMHBR HER
makeAndIncrement : Integer -> STrans m Integer [] (const [])

makeAndIncrement init = do var <- new init
increment var

x <- read var
delete var
pure x

makeAndIncrement HIEAFEH T ERIAL ([1) MHHE (const [1) HFEEAHKIEIR . E2H new
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OE— T state BR (X —DBIRWIGE)  WHEBSW, FZEEDR, REH delete M
Bre, IRENZBIRISRAE . BOVSHFEHE2FEE] new Tl delete AR .

STrans™~ (EHH -~ Type -> Type) HIZE m MMITE £ F X (Computation Context) , AL
SEEFET . X H, SRR LEIE T HATA LEARM R 3CHETe - BT DFER—D EF
X H A runPure SZATE o FlU0, KLU ESE ARFFAE Intro.idr XHFH, SR/E7E REPL HUE T LU
fl:

*Intro> runPure (makeAndIncrement 93)
94 : Integer

BE R B, KA TTAREI STrans B P AHIERE - FlU0, £#ET new init O 7 IR
&, VRATLLHARFERIRAER S B — 50 (Hole) SEE BRI G E W sEm A ALY

makeAndIncrement : Integer -> STrans m Integer [] (comst [])
makeAndIncrement init = do var <- new init
?whatNext

WRIRIEE —F 7whatNext (IR, W& LZIE —PATHIBHR var, TEREOR A SERUE BN A2
A AT BER

init : Integer
m : Type -> Type
var : Var

whatNext : STrans m Integer [var ::: State Integer] (\value => [])

XA AT EAEIT R B n R IAE - RS, AT E—DEIRE) L3R TE- 7
an, BATTREREE YR E — > AR S L B PR B R 3R TARRRERE - Jhitt, FA 1R 2> anf A
JKELET R (Lift) #1F-

3.2.2 #Ff: FHTELETX

Feanist, FATIAE AR EEAE A EEEE N nakeAndIncrement, M REINE WM& B L. T
2B TESE — B TAE LN 30 m Bt € 89 £ T3 10:

ioMakeAndIncrement : STrans I0 () [] (comst [])

lift BREA T AR 10 BAERY =K - FATA] LLRF ioMakeAndIncrement € S U0 T:

ioMakeAndIncrement : STrans I0 () [] (comst [])
ioMakeAndIncrement
= do lift $ putStr "Enter a number: "
init <- 1lift $ getLine
var <- new (cast init)

lift $ putStrLn ("var = " ++ show !(read var))
increment var
lift $ putStrLn ("var = " ++ show !(read var))

delete var

lift ARG RNERMERRZEITE LTI (A 10) FRIRE. R, BIREEED 1ift
EARRIRE -

B a7 S

f ioMakeAndIncrement H, FATHEAH T !(read var) MWKEIFEFIEEER - RALIE Idris 2z

3.2. ST A"4E: FRERTAE 72



Idris 155 308, R 1.3.1

(éat 24)) FENIXT -ICEMER . RERY, ERFRNTER A
. TSR R R E S| — DA -

NS LA, 7RA] LUK E = A DU KA R L

(') : STrans m a state_in state_out -> a

XA % zﬁﬁé/\f BT do-TEAIRAPRIH RIS EZ RIS E — 2R, RIEHE -RA AL E R
A

RMIAELE A, AR 10 R E R LN UEFEMERERGNE . B, EFERNERBHRILK
M 1ife, IXZUMAEE . FE, &EEE%E’J A, EaRERERRZ et JITSET—T
RAFORIREN (éat 78)) FEEX— 5

Pt AR AT TR 8 S 1 A0 SURBR BT 3 R 3T« Bil4A, Control.ST H17E X T ConsoleIO M, B
B RS ER M T LER T

interface ConsoleI0 (m : Type -> Type) where
putStr : String -> STrans m () res (const res)
getStr : STrans m String res (const res)

WALV, BATRER LUEM AT R BER res MG MG, XM TTIESAN 2N AT RO BR AR08 - 10
K E RSN

ConsoleI0 IO where
putStr str = 1lift (Interactive.putStr str)
getStr = 1lift Interactive.getLine

HIAE, FATAI LI ioMakeAndIncrement [E X H:

ioMakeAndIncrement : ConsoleI0 io => STrans io () [] (comst [])
ioMakeAndIncrement
= do putStr "Enter a number: "
init <- getStr
var <- new (cast init)
putStrLn ("var = " ++ show !(read var))
increment var
putStrln ("var = " ++ show !(read var))
delete var

EAMUAT LIERE R 10 R ITAE, Br IE—RET io EFICHITAME, BATAFZEZ LT CHHEM—
ConsoleI0 HISEIRRIF] . R THIMRIM S, BB MLA:

o FEXT 1ift BOVEFHRAER: O RISEELA, dEAE ioMakeAndIncrement A
o FATATLISRHES —FF ConsoleI0 AUSEER, HLUNFEEARM 1/0 HXF R FHE -

o ET—T (HREZERIRE (¢at 78)) FEATHZFE, ErILALFEA]E L %48 API, DIE
SEANE B E R AR A B -

BATZ B E R — £ N AR runPure #1217 makeAndIncrement - MAEXE, FATMER run, ©
RS LE FA TEAR AR R X HUT STrans BF (REZ B NI T Applicative BIA]) o FATATLIE
NHEHXFEE REPL FHUT ioMakeAndIncrement:

*Intro> :exec run ioMakeAndIncrement
Enter a number: 93

var = 93

var = 94
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3.2.3 FKEIRTUERIE state

N state HIFI T, HFATRKEEWEE, HRBIFRUEE . R, ABANVEHERBEREN, KT
R R 20 KB R R - flan, HENMEEERSTRRERN— N ITRE, ERES

CGaE

addElement : (vec : Var) -> (item : a) ->
STrans m () [vec ::: State (Vect n a)]
(const [vec ::: State (Vect (S n) a)l)
addElement vec item = do xs <- read vec
write vec (item :: xs)

ERIRTFEE import Data.Vect FHAT IR B -

EHH#H update HHRE

Br T 50 AEH read 1 write PAAM, {RIEFILUER update, BM— State FIEEAZ, W ERH
— I ERE, REBGAHLER . j#iT update YRA] LIFF addElement 5 WA FIEF:

addElement : (vec : Var) -> (item : a) ->
STrans m () [vec ::: State (Vect n a)]
(const [vec ::: State (Vect (S n) a)l)
addElement vec item = update vec (item ::)

ORI, FAVFAERREBIIERE— RIS EP KRB BRI . B, WRFATE — & BE
R, IEA AT LLNER G — A, HE S8 A E S B AR e % mE S -
RIEIZEERCE TIREURT, FATs LIRS 2B ARPRE, WESATE - B, N EEmE
BRI AL

readAndAdd_OK : ConsoleI0 io => (vec : Var) ->

STrans m () -—- R[EZICH
[vec ::: State (Vect n Integer)]
(const [vec ::: State (Vect (S n) Integer)])
readAndAdd_Fail : ConsoleI0 io => (vec : Var) ->
STrans m () -- IX[AZILA
[vec ::: State (Vect n Integer)]
(const [vec ::: State (Vect n Integer)])

A EILEE, B BRI R B AT U R B R AT B R . B, FATH const Fork B EE
RFFAE « AgAEXE, AT DU — D RRRREORTT B i BR - BATE e/ R m 2= T H SN
Bool, iLHURIAMINANEIRE True; IRJE N H BIRIZE— 1t

readAndAdd : ConsoleI0 io => (vec : Var) ->
STrans m Bool [vec ::: State (Vect n Integer)]
7output_res

WERIRISE 7output_res MIEM, HEFEF Idris FIE—1 KA Bool -> Resources MKEL, EFX
TNEH FERAIR AL AT LIRE readAndAdd FEE SRS :

n : Nat

m : Type -> Type

io : Type —-> Type
constraint : ConsolelO io
vec : Var

output_res : Bool -> Resources
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FrEA, HEIATCRONS, FiH BREN Vect n Integer (141 readAndAdd 1R [F] False) ; HUKIABZHT,
IR Vect (S n) Integer FAITAT LIHRIAVK B FRoR k.

readAndAdd : ConsoleIO0 io => (vec : Var) ->
STrans io Bool [vec ::: State (Vect n Integer)]
(\res => [vec ::: State (if res then Vect (S n) Integer
else Vect n Integer)])

g, FATESLI readAndAdd B 75 Z 05 H FPRSIREIE L AE - RN ERMN T —1TTE, HiR
E True, HNHEIRE False:

readAndAdd : ConsoleIO0 io => (vec : Var) ->
STrans io Bool [vec ::: State (Vect n Integer)]
(\res => [vec ::: State (if res then Vect (S n) Integer
else Vect n Integer)])
readAndAdd vec = do putStr "Enter a number: "
num <- getStr
if all isDigit (unpack num)

then do
update vec ((cast num) ::)
pure True —— mM—"ItE, FHRE True

else pure False -- XHINIITLE, KIIR[E False

WA B AT A ERE MR SR - RBAHE— D0, IBAEFEZLRERE AT, FTHH
HARESHARETMH N, - Fla0, 72U RIFEAN readAndadd & X H, FATHABIIIEILE T 1

readAndAdd vec = do putStr "Enter a number: "
num <- getStr
if all isDigit (unpack num)
then ?whatNow
else pure False

FATAT LA E 7whatNow IR, fRIRIEEBNE:

vec : Var
n : Nat
io : Type —-> Type
constraint : ConsolelO io
num : String
whatNow : STrans io Bool [vec ::: State (Vect (S n) Integer)]
(\res =>
[vec :::
State (ifThenElse res
(Delay (Vect (S n) Integer))
(Delay (Vect n Integer)))])

(AR B FEFE (A S WOR B 4 F %Du_ﬁﬁ%‘—lé’ﬁauwk,w T B HAIF A, Control.ST 1%
HET —/ returning BREL, FATA LUHERIBHIEEIREE, REFHHEMNAPRE . Flan, AT
B R FERL Y readAndAdd ZRE H9:

readAndAdd vec = do putStr "Enter a number: "
num <- getStr
if all isDigit (unpack num)
then returning True ?whatNow
else pure False

ERRIERINS T, F12IRE True, ?whatNow NiZEEREANFAIAE N H B FRIRE, M E X TIR [E{E
True RURIEHN - ATAFRE 2whatNow, FEKMIMENEEL T —5.
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vec : Var

n : Nat

io : Type -> Type
constraint : ConsolelIO io
num : String

whatnow : STrans io () [vec ::: State (Vect n Integer)]
(\value => [vec ::: State (Vect (S n) Integer)])

WAEIX D RIUFIR, fE STrans BRI BIRIIEF, BT LLED [ vec HIN— N ICERTEMHETE XL

readAndAdd vec = do putStr "Enter a number: "
num <- getStr
if all isDigit (unpack num)
then returning True (update vec ((cast num) ::))
else returning False (pure ()) -- 1X[F False, FULTCTE AR

3.2.4 STrans HRIEERE

?*/CTITE i JLANKTF STrans RE/IMIIT T, RRF R T X SR SIRIERET - BH%, N7
?*U(m\, BAMERT read fl write MR

read : (1bl : Var) -> {auto prf : InState 1lbl (State ty) res} ->
STrans m ty res (const res)
write : (1bl : Var) -> {auto prf : InState 1bl ty res} ->
(val : ty') ->
STrans m () res (const (updateRes res prf (State ty')))

EAIRRRERRE RIPA, FHERIK pre S8, HXAN.

prf : InState 1bl (State ty) res

BT — 1 E InState- ﬁ/\iiﬁ InState x ty res MERTERIEIIE res F, 51H x
RELLIUN tye PR L, PrEAXMMEREIOR, WR— DRG] HAET REIIRS, %BA&
MM A REREI LS N B -

ZETE— N RIFIRE res Fl—1 res AET HWIRFIERHFHIER, A4 updateRes & FFNZFIRAIRA -
.Jﬂi, write MR FIRIZFIRPI R W M5 e ERRA .

update fIRTE read fll write RALRM, EHHFEBIRIIRI NG ERIMARE, HRHEEH
DNV BR SR i H R

update : (1bl : Var) -> {auto prf : InState 1bl (State ty) res} ->
(ty -> ty') —>
STrans m () res (const (updateRes res prf (State ty')))

new MIERRIFIRTIREI—1 var, BE—TEA N state FIFIIRE, EWHBRFERES— MHRIET S

State state HIHIE:

new : (val : state) ->
STrans m Var res (\1bl => (1bl ::: State state) :: res)

FFIRAIRTE ) State state MIAERZ state X— SR HEZE, FXEELLFRARER APT FOSCERAHTY .
FETF—THEARRSIY (bt 78)F, HATSFBEELZ R THEHE LPINE -

delete HIREIFIR, BE—MREEETHANERENOLEIIEN, ZRES WIS P
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delete : (1bl : Var) -> {auto prf : InState 1lbl (State st) res} ->
STrans m () res (const (drop res prf))

XER drop & — MR EE, THTEHRIREYIE, WZFETFBRAEHEIE 101 -
Bz 24 1ift F£RE LN ST b T - ERRA .

lift : Monad m => m t -> STrans m t res (const res)

Y5 —" result {, pure £IREIF*AIZ(ER] STrans F/F, HFEZEN, BEEX L FHIFEIIERE
1EM:

pure : (result : ty) -> STrans m ty (out_fn result) out_fn

BATATLIA returning M STrans MRECHIR[EMERSFE S NFER S REEARS, LIEFHRIRS
FAH NN TIZREE:

returning : (result : ty) —->
STrans m () res (const (out_fn result)) ->
STrans m ty res out_fn

w5, BATEZH run F runPure ERFE LN XHHUITIE STrans AT - run S7EAEM LT CHHUT
MREL, #FIZERCEELT Applicative, HF4 runPure & 7E[E— R CHHUTHREL

run : Applicative m => STrans m a [] (const []) -> m a
runPure : STrans Basics.id a [] (comnst []) -> a

ERAEEMEBLT, WA LIRS RO N2 H —MITEREBRERTRRYIER, 2R
E‘%E’Jm/ﬁ BT R TERHT /FAEE%WEx?”E’] STrans P55 FEAT, HH HEATH
SEH, XEBULRANERLZ 2 APL,  LURINREDR R AR O RTE RS, SRR iR
B -

X BADAL T ST FEFIL - EBIEIE RTINS, RilTe AR —LEEREE, Ad BT
WHIRREUR LILEFATH Tdris HEATARER RIS BRER RIS T .

3.2.5 ST: BEERERREER

?icﬂTE 2 Wit —LEE B STrans PRELAOWI T 1, HITHERMEA M AR BIEYIE, EITRE
BRAEF UK AR ENFIERIERMRARLIRTT 6, Adxt TR —RAEARU, FENMIIE

’ﬁ/ﬁi%ﬂ?ﬁ{‘i’z‘fz T IC /R Se B 45 tH 3 A\ AN BERS I R ATE 2 BN JT 68« FATTAT LA ST SR fEhx
_.)f_f,“:

ST : (m : Type -> Type) ->

(resultType : Type) —->
List (Action resultType) -> Type

ST N RBREE, EEAEENTES (Action) FIFITHE X NA sSTrans KA, ZRAMIA T
FIRAPIRESERS - BRECKTE ) Action (IR LI (BATZFEL2 RBIHERRK) -

e 1bl ::: ty FREIE 1ol KIJFIEFLEHREE N ty

e 1bl ::: ty_in :-> ty_out FRTIR 101 bl{kjt'ty in JFR, DUIRES ty_out gER
e 1bl ::: ty_in :-> (\res —-> ty_out) F/nHIE 101 LURE ty_in 1A, LUK ty_out 45

W, HA ty_out MKEL res HILEFRHITEIFR -
AE, FATAT LR Fi T B — L2 R F i R A B Rl R IE
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increment : (x : Var) -> ST m () [x ::: State Integer]

A, increment HIFFIAFNLEHCIREIIH State Integer RER) xo

makeAndIncrement : Integer -> ST m Integer []

A, makeAndIncrement HYFFUAFNLE I A BHR -
addElement : (vec : Var) -> (item : a) ->

ST m () [vec ::: State (Vect n a) :-> State (Vect (S n) a)l
B, addElement ¥ vec M State (Vect n a) M) State (Vect (S n) a)-

readAndAdd : ConsoleI0 io => (vec : Var) ->
ST io Bool
[vec ::: State (Vect n Integer) :->
\res => State (if res then Vect (S n) Integer
else Vect n Integer)]

BATES XFRE R, A T RE AT i B AR SIS R /MO BE & . R FEA
FRB KA T N5 R (W readAndAdd) , APAFA R EZEMIATE . EN (4 increment F
makeAndIncrement) , Al 1] LG i A\ GH 5FIRY| £ LGS EE -
Action A DI IAGINFNRS BRAR S :

e add ty, WHRZHEIERE— Var, BRAESRIN—" vy REIFH IR -

e remove 1bl ty F/RIZIRIES NBTRYIRF AR vy G, BER& N 101 FIRE .
Flan, |ATTLLE S

newState : ST m Var [add (State Int)]
removeState : (1bl : Var) -> ST m () [remove 1bl (State Int)]

F— PR newState R[E—PMETHIBIRIRZEHFHZ BRI State Int RARBIRSIFRH . H 1
BR%L removeState MRIFLAEMIIRE 101 MINRFRBIRIZBIIR . “HHIRA S LU AE

newState : STrans m Var [] (\1bl => [1bl ::: State Int])
removeState : (1bl : Var) -> STrans m () [1bl ::: State Int] (comst [])

ARG Action HIIFIE I - Bl lJaHId 2@ 2| — L R R B SR A et i 5
B T R DR ZER SEBE R STrans HIIEULAL, EARBRRRIRIF D H, HATEF 26EH sT- £ F—T

?%fﬁﬂ‘]/ﬁ\%@ﬂzﬂﬁﬁ% ST AR N FHEL MR RRRE R AP — M HREEROBIEF
‘%/ N2JL e

3.3 HRBFRRE

(é@g 69)— T, BAHIREEREER THEFEASMERE,  DUA RIS E T /5
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login
(success)
login
(failure) . LoggedOut Loggedin . readSecret
logout

B2 UIREMIEZFEE RSN ERS, 2RAERMIRESSB85EZER . fli, ErlgEa
THP% S B RS EN A %S R, BB BT EATEAT RO EH1E login logout H
readSecret M5, BFIRSIRE THBLLERB R -

HANCE NS ST BIPRE, AERMRRERRET - ZEARTH, HATSFE WA st Ak
FERGHR ML 28 APL. 78 APL 77, Fof1& R F AP BE . X fhr=, FATA
PURTEIRESE R A BEHAT Llogin~ logout 1 readSecret #1F -

HATEEHit state K EJFIEEELE new- read- write fl delete RIIERET o« MX THIEEMEL
API, FATNILLE O (W Idris %U’F%EPEI (éat 21)—7T1) o BOHA T XNTEE RS RVERIE,
HRTINER R T R A 7GR, DLUE ST AE RS RPIRSH @ a0, A8
WX R V5 IR A R G ME— R T = -

3.3.1 NEEEFEHERGE L EA

HATE SAE Login.idr IFHE LHIRRE, TRFFHEAZMHH MRS, B Loggedout Al
LoggedIn:

data Access = LoggedOut | LoggedIn
FATAT LUE L MR R BRI ARG E IS, RETRLENEE (WA - BRI E
i FRENASESE) | HREESRERSEULZ BTG R

Store : Access -> Type
T]ﬁﬁfrﬁme%K%XE1$E@%@, MR TR SRR AN E O, 25 HEE LR EREE
itk

interface DataStore (m : Type -> Type) where
Store : Access —-> Type

FATAT LIRSy e 3% O AN E R EFE R R « XML SRS - B R 0 5 ESSBE 5, Bl
AR BRSO AR R A B ARSEEE - 1A, Bl TIAF] UUGRE 5770 RS ERIRE 7 T E 75 A1iE A
AT SEELAILH T -

FATFEH connect HEHEAZF RS, H4EH)GH disconnect WiTFi%E#H: - Ff1h DataStore M
IR A1

connect : ST m Var [add (Store LoggedOut)]
disconnect : (store : Var) -> ST m () [remove store (Store LoggedOut)]

connect HJRMERAE &IRE—MHIIHEA N Store LoggedOut MIFTHIF - K, disconnect NI
LEHI— MRS Store LoggedOut MBI BERIZTTIR . AR LLE AT CRIER) & L HE T
#H#EF| connect M T4

3.3. FHRAFRRREN 79



Idris 155 308, R 1.3.1

doConnect : DataStore m => ST m () []
doConnect = do st <- connect
?whatNow

EEFNEE—D =L T n FILAIE, N TEEHHUIT doConnect, FATLIIAN m SLH DataStore
BEFRIRSIE - R EATRE 7vhatNow IR, FEFERIH NHHERIELL—IRER Store LoggedOut
BR st IR, DARE AT B BRIRSS

m : Type -> Type
constraint : DataStore m
st : Var

whatNow : STrans m () [st ::: Store LoggedOut] (\result => [])

&, FANTPTLIF disconnect SRFAEFRIZ BK:

doConnect : DataStore m => ST m () []

doConnect = do st <- connect
disconnect st
?whatNow

AR ?vhatNow FIRI S BoRTRATVE G T FH AV BEIR:

m : Type -> Type
constraint : DataStore m
st : Var

whatNow : STrans m () [] (\result => [])

O T HREESEE DataStore HHMYSKIL, FATEE N ARSI — D EBHLELIERTTEL - XHE store PR
BH store LoggedIn:

readSecret : (store : Var) -> ST m String [store ::: Store LoggedIn]

W EATATLURERS — R, TRERDFEHAS, R EBWIEEE, 2T EE. Rine
HAEAT), EANHAT readSecret TEFA T T EEFIRE -

badGet : DataStore m => ST m () []
badGet = do st <- connect
secret <- readSecret st
disconnect st

BESTELI TR, BN connect B8 TAIREN LoggedOut AIHIFE, M readSecret T 2LiL A&
IR LoggedIn:

When checking an application of function Control.ST.>>=:
Error in state transition:
Operation has preconditions: [st ::: Store LoggedOut]
States here are: [st ::: Store LoggedIn]
Operation has postconditions: \result => []
Required result states here are: \result => []

WA G B T TR AR (ATHRSME) MRS VBN 5B ETrPREE AR -
F T H readSecret, FAIFFE—MTT=¥f Store LoggedOut ¥#th) Store LoggedIn JRA . Ff 1Al
PIYEZIRKF login (B5%) $8ENLUFEREL

login : (store : Var) -> ST m () [store ::: Store LoggedOut :-> Store LoggedIn] -- ZEA!/NIEHf!

ER, BOFHBEERN login ZIM TIER), FERE T EWFEMATARIRE . AEMYE, login
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PR EH SR, FAERE T ERSSMT) . tREREY (e % SIg R A\ e A -
BN TEREN) | IBAE—EANSTE LoggedIn IRAMIFE -

B, login TFEHEIL LN RELR BB T AL

data LoginResult = OK | BadPassword

g, FATAT USRI EHERIRE (W KBEEERE State| (éat 74)) - FA1H DataStore
/J\jjuu‘Fji/f

login : (store : Var) ->
ST m LoginResult [store ::: Store LoggedOut :->
(\res => Store (case res of
0K => LoggedIn
BadPassword => LoggedOut))]

W login ALT, FP4 login Z /GRS 2 AL Store LoggedIn. M|, RAEIRA Store
LoggedOut -

REERSED, BAIETFERN—MHEHZEERSRE . BAVRGRH SRR, FHRFE RS
IR Store LoggedIn Fi#ty Store LoggedOut -

logout : (store : Var) -> ST m () [store ::: Store LoggedIn :-> Store LoggedOut]

XFERRSEAL T M T - SERATAS AN T

interface DataStore (m : Type -> Type) where
Store : Access -> Type

connect : ST m Var [add (Store LoggedOut)]
disconnect : (store : Var) -> ST m () [remove store (Store LoggedOut)]

readSecret : (store : Var) -> ST m String [store ::: Store LoggedIn]
login : (store : Var) ->
ST m LoginResult [store ::: Store LoggedOut :->

(\res => Store (case res of
0K => LoggedIn
BadPassword => LoggedOut))]
logout : (store : Var) -> ST m () [store ::: Store LoggedIn :-> Store LoggedOut]

FEZROPRIE O REIZ 5], HAPREBEWMHERRFE R, UMREFEIRFE RS EERM
R B ERGE, R/ FER -

3.3.2 HBIEFHEE OGRS KR

ARG getData HMECHFI, B/RUFIEH DataStore FEM - ZREH THERER|FME ARG ML
B - BAEAZ BB RTDRZE SR SIT R, TEAMRE I RE . ERIRTNT:

getData : (ConsoleI0 m, DataStore m) => ST m () []

BRFORIEENBOR N E BRIRATH - @i, BIESIRS 0, XFREDIINRA,

lZlZléﬁbj%&ﬁﬂ IR AEVEH o #AEY, ST E—7EVH R getData BF QI BTIR, AT EE
B H AR

BT 3 1E# H DataStore ORI AL, WL MFAFRITE I F X m fHFESEI] DataStore B - Ffl]
E— Consolel0 m AWM, IXFERLEERFATMANE RO H I AR EIE s E R E B ERH K .

HADEREIFE ARG, QPRI st, REZEHA login B3R
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getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect

ok <- login st

7whatNow

BRATREAIN B ATRERINC, PIMPIRE TN ok (EABRIIA - WRBANIEE PwhatNow HIRT, WM EEE
LI E R STHPIRE:

m : Type -> Type

constraint : ConsoleI0 m

constraintl : DataStore m

st : Var

ok : LoginResult

whatNow : STrans m () [st ::: Store (case ok of
0K => LoggedIn
BadPassword => LoggedOut)]
(\result => [])

HT st KA FPRSERIT ok AOE, FLIATAT AN ok /BTN IR RAREAE I

getData : (ConsoleI0 m, DataStore m) => ST m () []
getData = do st <- connect
ok <- login st
case ok of
0K => ?7whatNow_1
BadPassword => 7whatNow_2

P50 3 ERIBT 7whatNow_1 # PwhatNow_2 HIRMRIL [ IRASZ Gl & B M 5 B -
FOBRAT), IBLVZAFERGHPIRE LoggedIn:

whatNow_1 : STrans m () [st ::: Store LoggedIn] (\result => [])

WMRKM, IBLEHPREN LoggedOut:

whatNow_2 : STrans m () [st ::: Store LoggedOut] (\result => [])

£ 7whatNow_1 1, FITERAMI), BT LUERLHESEH - BonEs i L.

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
ok <- login st
case ok of
0K => do secret <- readSecret st
putStrLn ("Secret is: " ++ show secret)
?whatNow_1
BadPassword => 7whatNow_2

HATELL [TBIRATH ] FPRESREEH 0k 4930, BITER HAFIE RO

getData : (ConsoleIO0 m, DataStore m) => ST m () []
getData = do st <- connect
ok <- login st
case ok of
0K => do secret <- readSecret st
putStrLn ("Secret is: " ++ show secret)
logout st

(87 Néatezggan)
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(¢znéyLéat)
disconnect st
BadPassword => 7whatNow_2

FEEFNEMA disconnect Wi LR, WA logout B st, Bl disconnect TEAFERGAL
T LoggedOut RE -

BeAh, BATREES E—H state HIREIBLEE, W HMA delete KMIBIZHEIR, FHRITHEANLE vy
HKit, delete HAEERTIRMIERTLN State ty MR - IR TIHEH delete KA disconnect,
BRI NG

When checking argument prf to function Control.ST.delete:
Can't find a value of type
InState st (State st) [st ::: Store LoggedOut]

Ha)iE L, REEEZIHAE]—1 [BR st 15 State st FEZUAIRAY ] AUIERH, K NEZEAS Store
LoggedOut - T Store s& DataStore ¥ HHI—H#B4>, WA TMEIAKRSNE Store MEMEIR, FEIHLFA]
FEGET IO disconnect MIEEEEH delete FMIBRERIE -

FATIT LUK getData SEAANT, FHABREICEDRSE L (W Idris BREAPE TS do-1CHE| (6at 24))
MEHEEH case IBAIRIHIK Llogin AIREF A AVEIR:

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
0K <- login st
| BadPassword => do putStrLn "Failure"
disconnect st
secret <- readSecret st
putStrLn ("Secret is: " ++ show secret)
logout st
disconnect st

R EIAEL AR, FATNTILE A EM DataStore IS ! IRFATHERE—1 10 £ FICHH
e, BaT*E—"N%H DataStore 10 HISKHIAIEEIR:

*Login> :exec run {m = I0} getData
When checking an application of function Control.ST.run:
Can't find implementation for DataStore IO

it ZESLHLETEHRS R OEIRFE RS, &5 —PEIRA—1 DatasStore AL -

3.3.3 SEHEEO

BAE 10 AT getData, HAIFERM—PEEWLE 10 £ T30 TIER DataStore AISEHL . FATAT LA
XA

implementation DataStore IO where

E, FATATLIAL Idris RIGLETTIERIEAE SORIEFIZE N (£ Atom FI% N Cerl-Alt-A, BETE
VRE I G 1% T o0 RLAOBRFESER [VRINE L] ) -

implementation DataStore I0 where
Store x = 7DataStore_rhs_1
connect = 7DataStore_rhs_2
disconnect store = 7DataStore_rhs_3
readSecret store = 7DataStore_rhs_4
login store = 7DataStore_rhs_5
logout store = 7DataStore_rhs_6
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HATE L EAHE RN FHERTI T R EER, FATREBIEFE N BN String, FHH
Bt G 1) ) 2 P SR AR BT [RIABR « BATTFT LUK Store SE IR, TCIBAE LoggedOut L2 7E LoggedIn IR
A THEH string RERREIE -

Store x = State String

MAERNAHE T store FI—PMEAKRER FATAT DAISEEIEE LEE: - Wi S muh BRI E. mMET
FAMERT state, FULH il LI#FH new- delete-~ read fl write RIFEIZFM RS -

LR S EIFBA T AHRIEIR - #l10, 7DataStore_rhs_2 HLE IFHATE LI connect 77EMLE(
2o FAFEEOR B — T Var, Fon— 1K state String KB

DataStore_rhs_2 : STrans I0 Var [] (\result => [result ::: State String])
FATAT LA A — A R HOR E N N AR 2R EIE (AT AEHEM String) |
NG IRENZ R &

connect = do store <- new "Secret Data"
pure store

T disconnect M5, FATAFTMERIZFE IR AT

disconnect store = delete store

X T readSecret, FA1FFEILENLZ LR H R M String. HTHRATHAFEZEIBE BERTRN
State String, FUILATLLEREA read SRk nIEHE:

readSecret store = read store
PATHEHRFER 1ogout, ZJ/EHE] login Fof. RERMERMSERUTEE.:

DataStore_rhs_6 : STrans I0 () [store ::: State String] (\result => [store ::: State String])

RIS NRESEER AR, BATTSRFR AR R T 1 !

logout store = pure ()

ST login, FAIFEREIEFEERMIN . Nib, FANIFER RPN, FHAEVCH S| g5 r0 %
TR E 0k, AR E BadPassword:

login store = do putStr "Enter password:
p <- getStr
if p == "Mornington Crescent"
then pure 0K
else pure BadPassword

T MBI LS E | BRI REPL F13UT DataStore F2/7:

implementation DataStore IO where
Store x = State String
connect

do store <- new "Secret Data'
pure store

disconnect store = delete store

readSecret store = read store

login store = do putStr "Enter password:

p <- getStr

(8yNeéatezgeam)

3.3. FHRAFRRREN 84



Idris 155 308, R 1.3.1

(¢znéyLéat)
if p == "Mornington Crescent"
then pure 0K
else pure BadPassword
logout store = pure ()

Ba, BATATLVR T EXHEAE REPL HEE (WA AP 10 3, APATE Idris B REPL 1, L
TREBINH 10, FIXELHFEASE n 250 -

*Login> :exec run getData
Enter password: Mornington Crescent
Secret is: "Secret Data"

*Login> :exec run getData
Enter password: Dollis Hill
Failure

5 F State BRIFIHIR, FATREEMH read~ write - new fl delete. A, 7F DataStore HJSEINEL
BB ETRICh 10 FEMERNER, AT LBER T IR 08 RS0, X BEESLI DataStore D
MR TT o IRT, WISRIRATHA DataStore m WA, AAMTCIEMEZFIE RS RS O, K
AT HEEET DataStore HALH API SRIFFIE -

I HER I B A R AE getData X RRECHHEHRZE (Generic) LT m, FHAMRIERANIFENED
PEATARR, MR AR LT 10.

AN EL LT A FIRA, DL DR BRI X R B R G IREERE T - AT,
%E%%%%?%%Eé%ﬁ%ﬁmoﬁﬁ—ﬁ%?ﬁ%%ﬁﬁﬁm,ﬁ%%?%ﬁ%ﬁm%iﬂ—ﬁ
RASHL -

3.4 BAWREH

FEE—Tid, FATE LT DataStore HHHHELI T LN MEF, EREILHAPBEFZEEASRE
ITENTERERIA A

getData : (ConsoleIO m, DataStore m) => ST m () []
getData = do st <- connect
0K <- login st
| BadPassword => do putStrLn "Failure"
disconnect st
secret <- readSecret st
putStrln ("Secret is: " ++ show secret)
logout st
disconnect st

ZRBAR T —MIRE, RIFEEAS - R, FRIEFET 2 ELZ PR, AiTE R aeil
NN MPRECEECRE - BUARBITI S, TERIEER, AERASFICFE R RIMARECE & FRY & -

Beoh, REHEATLIEBR, Bl —PIREHLAT LOES B & HERENREI . flan, FATrT A —15%
REFERGHPRENL, FHEREH Rk IMEENER APL, [Ea2E] 2EHEERS
b —EERRS PR

FEARTH, BAISBRMAERZ RS, URAFARARESYLE & BCE @ P ARSI - BTk
BRI getData S INE SRR EAS -
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3.41 MFHZAHIERIIE

N TR Z AR TR, BAIFEBI getData SEHIEIN, RFIERH P B R KMAEIR
e pian, RBAREH) main BFVIIHICREECY 0, LA SEIEEERMRES BXHD:

*LoginCount> :exec main

Enter password: Mornington Crescent
Secret is: "Secret Data"

Enter password: Dollis Hill

Failure

Number of failures: 1

Enter password: Mornington Crescent
Secret is: "Secret Data"

Enter password: Codfanglers

Failure

Number of failures: 2

HATE S getData INI1— P EREFRIIREH IR B

getData : (ConsoleIO m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]

getData MR E

MARRERHEE Y, MEKAEH T getData MEBEHMITIEB L REFT - XEBRZH

)1 AT BYeR getData FORE SRR, Bk -

#E, BABE— nain B, ERAREWIRILS 0, RFHH getData:

main : I0 O

main = run (do fc <- new 0O
getData fc
delete fc)

BUAEE F K getData - FATSEHRIIN—DSEETR RVF I RIREL:

getData : (ConsoleI0 m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
= do st <- connect
0K <- login st
| BadPassword => do putStrLn "Failure"
disconnect st

secret <- readSecret st

putStrLn ("Secret is: " ++ show secret)

logout st

disconnect st

SR, BEREENERGE, HRNEATHAREA connect MIBHFNIEM - $5R(E BIA T HIFATAL

When checking an application of function Control.ST.>>=:
Error in state transition:
Operation has preconditions: []
States here are: [failcount ::: State Integer]
Operation has postconditions: \result => [result ::: Store LoggedOut] ++ []
Required result states here are: st2_fn
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i‘f&ﬁiﬁi}‘é connect T EAEIE AN B BR, EINTHAE DB, FIRMIRE! XA 4 R
FEE R TR Z OB M BRR T8, MBMIRIR GXEZKMIRED 5 connect LK - At
HAl 175 2 — Tl oS BEBRRAT I B IR 7 i -

FATAT LA call ERECRIEL HAY:

getData : (ConsoleI0 m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
= do st <- call connect
?whatNow

ﬁmﬁ:ﬁiﬁ getData | FEUES 2T ML, XFEIRATLLEE] call FMEH - EFBR T A connect f
RS R AL ERERSY, RETEREIFKE T EAT. Fit whatNow FISRTIFRBAEA TN T — 105t
{}—\ R st, 1M failcount{KIRATH:

failcount : Var
m : Type -> Type
constraint : ConsoleIO0 m
constraintl : DataStore m
st : Var
whatNow : STrans m () [failcount ::: State Integer, st ::: Store LoggedOut]
(\result => [failcount ::: State Integer])

eI RE R BB )G, whatNow FRPAFNIFELURE st 458, ,“ﬁﬁlﬂjﬁﬁ;ﬁ failcount H AT - AR
U\Tﬁﬁﬁfﬁ%ﬁﬁ%%aﬂjH’]T‘y’ﬁf/ﬁﬁ{?ﬁﬁﬂ call R{EBRTIRSIE, XHESERHY getData L AEH & /T Il AR
luwm(}::l: /E

getData : (ConsoleI0 m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
= do st <- call connect
0K <- call $ login st
| BadPassword => do putStrLn "Failure"
call $ disconnect st

secret <- call $ readSecret st

putStrln ("Secret is: " ++ show secret)

call $ logout st

call $ disconnect st

A AR, KPR EFATAT DI call ZRBEXAINERE - BOAEOLT, RFZEERHIFIN call,
HANRIRF AT Control.ST.ImplicitCall, AP4 Idris Bt EFRZRIM AT -

import Control.ST.ImplicitCall

IFER) getData BRLFIZHI—HE T :

getData : (ConsoleI0 m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
= do st <- connect
0K <- login st
| BadPassword => do putStrLn "Failure"
disconnect st

secret <- readSecret st

putStrLn ("Secret is: " ++ show secret)

logout st

disconnect st

XTI WRIRS AT Control.ST.ImplicitCall, ARAfHAHZ M BIRAYKES FH il L,
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DNXEERE call T o F—J51, Idris SRR RBERE S ZEE AR, X2 FEEHREDH
8], #R(E M a > —m ) -

E— 1 call R, REEHEA:

call : STrans m t sub new_f -> {auto res_prf : SubRes sub old} ->
STrans m t old (\res => updateWith (new_f res) old res_prf)

HE B R E0E — D RIRYIER sub, iE — 1T FATCIERA SubRes sub old, ‘B UERA T #EE FH R EH ¥R
YR BN TR R TE . RE TR llﬁf?TUEﬁE, IRTMAE old H HINAI IR TCIETE sub FIFRH
HIEE —K (REZHERSEHE— P REER) .

PR%L updatewith 32U FH R BRI BER, ORSE LT BRRS IR P BORTEA ]t e R REIRTF
WRFPANAE ,  RVEHVA B R SR a2 1 ’Emﬁ’]h{ﬂ%f/ﬁﬁﬁﬁcfum—fW%%JIW?o

FEA VA FH B R 550 3 B2 ) BE IR

NSRRI A R B B3 TR BT, IR AE T updatewith B TAEAZ, EATEY 2 HIERRSE
HIREE - VRAT LIZERITH R SEAH) getData HIE LAHFENX— 5

% ) A TP LABEHT getData fEEFTLUEES, FEAETRENTRIFEHT failCount:

getData : (ConsoleI0 m, DataStore m) =>
(failcount : Var) -> ST m () [failcount ::: State Integer]
getData failcount
= do st <- call connect
0K <- login st
| BadPassword => do putStrLn "Failure"
fc <- read failcount
write failcount (fc + 1)
putStrLn ("Number of failures: " ++ show (fc + 1))
disconnect st
getData failcount
secret <- readSecret st
putStrLn ("Secret is: " ++ show secret)
logout st
disconnect st
getData failcount

FEEXBRNSAEBIGEPELI W % . H—MEI TR EE R connect EILERE, RNEH
F getData, HEZI4NT:

getData : (ConsoleIO m, DataStore m) =>
(st, failcount : Var) -> ST m () [st ::: Store {m} LoggedOut, failcount ::: Statey
— Integer]
getData st failcount
= do OK <- login st
| BadPassword => do putStrLn "Failure"
fc <- read failcount
write failcount (fc + 1)
putStrLn ("Number of failures: " ++ show (fc + 1))
getData st failcount
secret <- readSecret st
putStrLn ("Secret is: " ++ show secret)
logout st
getData st failcount

£ st HIKA store {m} LoggedOut FHMNENA {m} R+ HHEER, EIWiXLE T Idris E@%E’JEM
KA — 1 DataStore HISEIMEH TELHX A Store HISKHA . B, WRFNTHE Store
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LoggedOut, ABANFICIEIREN Store PTREXEIFITTHE LT m-
E%%%%Eﬂ]ETEi%E main #351 connect ?? disconnect **ZK:

main : I0 )

main = run (do fc <- new 0
st <- connect
getData st fc
disconnect st
delete fc)

B call 805 A Control.ST.ImplicitCall, FA1AIMIREHFHEZANFIRNER, REHEHH
— H B2 HEIRN 7R REUNT, KBRS R -

3.42 BEHE: WRENHNERK

FAVIAE CLE W e — D sRECH A Z DB T, X0 TR RE BRI EIR SR SE PR A RE Fe R 2
WAH . BATTLUEEE R [#EaK] 26 —KERS IR ZITEFLFE [Pn] mE5
ET— P EZ A BRI AN B

HEATH, BANSEE—DEXMEFT . B, FAE—1ED drav PRI NEREE APL, E
SCFF

FTIH—IED, BE—DNEM (double-buffered) FIFE (surface) RZHE
TEFTH il AR Y
SRIX (BT (Aipping) | . FEE O BoRFA NI H] 2L BB

KHF—1E O

Ror: ZEDEAERB Z2IR, FE—NEHX (buffer) REFIREIMEGR . ZPXK—BE=
NEREEIE: clear (BZ) | flip (BITL) M rewind (EE) - clear 2K LRI RKIEE IEER 2
B, flip 2FHEIRPXHOEBRERERE L, REEZRMXERT—IR2E; T rewind M FRFFE
MXNAEARZE, EHEREFEREL-

ARVE flip M rewind AIRTHLH KRB, rewind RUEIT HAL, T fip W R B A 8E0UA —
M- flip — M IThRERTR, AR (BT FonREmsERs, JHAT—EH -

&, BAE— interface PHIL API RN [WERLE | SLH— 1 H S APL. X AUFE Drav
O, CSREFRBAIRE (ME, HRMEEHRE) -

SDL 485&

0 TIAAT P EPRE], VRFEN Idris 23— M ER AR SDL 407, ER M https://github.com/
edwinb/SDL-idris KB - XLEHELI T SDL API K—MR/AMTE8, RREERIER . REW
tt, efles e USE— YR R PR R R AT B T -

—BARZETX N, el LUl 280530 Idris T, -p sdl AT SDL 4%, -p contrib AT
Control.STo
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Draw O

FATEAEIL API 5 Idris B SDL 4558, FILIRTEEELRE T EE G S Graphics.SDL- FA(]
JeokiE X Draw #H, EEE— MR FEHEIERE, BIISEHZ F2H] Z&%%ﬂ%ﬁﬁﬁ:

interface Draw (m : Type -> Type) where
Surface : Type

HA 7 Z R E L AT I & MR BIEHT Y Surface:

initWindow : Int -> Int -> ST m Var [add Surfacel

INTIIXFEA K IER - RN TR FPEATERE ] A RE O RGNS Hi‘”EF' IRAFTHE ORI RES 2K
o I,  initWindow Fe2e AFEMT ZORROG FTRER R - T TR LUET R[] Maybe Var TMIE Var,
PLI S AE I Surface SRMEX—

initWindow : Int -> Int -> ST m (Maybe Var) [addIfJust Surface]

TAFFH T Control.ST HE Y HIZREI R4 addIfJust, WEREURME— Action, (XFEFRIER TN
IR (HEid, BiRE—1MEW Just val FILER)

addIfJust 5 addIfRight

Control.ST HE X T BEMSFEHRNE R DI A05& BT S5 IR O R 2L, E AT addIfJust S EERIEIRE] Just
ty BHRINEEIR - LAMAH addIfRight:

addIfJust : Type -> Action (Maybe Var)
addIfRight : Type -> Action (Either a Var)

AR T THEBEIEEIE Add TP - WWEMERSZ — D IREL, R EOARIERSE R A H— B
F%:

Add : (ty -> Resources) -> Action ty

WHRE, RATLAERLEECHEIE, DURETE N BREMSERFINEIR - 1401, addIfJust
AISEIRAR T -

addIfJust : Type -> Action (Maybe Var)
addIfJust ty = Add (maybe [1 (\var => [var ::: tyl))

MARFANREORE L, A BFHFEREMRE

closeWindow : (win : Var) -> ST m () [remove win Surface]

HATATFRZ NG R T B R R RAX K A o Graphics.SDL FEN IR T Event KA, MFATH LA
H poll ¥, WRFARIE, EXRERE—MRENFEE:

poll : ST m (Maybe Event) []

Draw FH THITEERE: flip, E2RMNLIX flip LORAHIMPTE EGE R R Lk, W2 E
A7 ¥ filledRectangle F1 drawLine -

flip : (win : Var) -> ST m () [win ::: Surfacel
filledRectangle : (win : Var) -> (Int, Int) -> (Int, Int) -> Col -> ST m () [win ::: Surface]
drawLine : (win : Var) -> (Int, Int) -> (Int, Int) -> Col -> ST m () [win ::: Surfacel]

HAH T UE LER, MBI REREE (4. & . NEWRE) -
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data Col = MkCol Int Int Int Int

black : Col
black = MkCol 0 O O 255

red : Col
red = MkCol 255 0 0 255

green : Col
green = MkCol 0 255 0 255

by

N N VAR NI CE Y SRS

T}

B

FES A Graphics.SDL ZJ5, {RELAT MR NELXMEM SDL HISEE LI Draw £ H T

implementation Draw IO where
Surface = State SDLSurface

initWindow x y = do Just srf <- lift (startSDL x y)
| pure Nothing
var <- new srf
pure (Just var)

closeWindow win = do 1ift endSDL
delete win

flip win = do srf <- read win
lift (flipBuffers srf)
poll = lift pollEvent

filledRectangle win (x, y) (ex, ey) (MkCol r g b a)
= do srf <- read win
1lift $ filledRect srf x yex ey r g b a
drawLine win (x, y) (ex, ey) (MkCol r g b a)
= do srf <- read win
lift $ drawLine srf x yex eyr gb a

TEARSZEA, A A startSDL RYIIEILE O, EFERMAEE Nothing. HT initWindow M7
VWA STRRETZA Just val BIEREII— P ER, EIERATFERDIN A startSDL R [E -
TERWU A 2 A - FATHBELE startDSL BN BTG ILART) -

WAERANTE T Draw FISLEL, ATLLCE S —LRE T, (TR O P2 EHFiET SDL 4EiTed]- 7l
. EOREANTE — DA REEFE win, IEARTLISRS render AR OHE R LK.

render : Draw m => (win : Var) -> ST m () [win ::: Surface {m}]
render win = do filledRectangle win (0,0) (640,480) black
drawLine win (100,100) (200,200) red
flip win

BRJEH) £1lip win A, BNLREFEEEH T WG X AR R B - Bl 17ERRR Z S g X
LK, FRERS—MRWX . FRA flip B, EXR SRR ZINORPXEREAR, Hald—
ASETHIBR RSN i X 2 R — Mo -

ERTASAERERFE, BINFERS — D EIEERER, FINSER P M R R

loop : Draw m => (win : Var) -> ST m () [win ::: Surface {m}]
loop win = do render win
Just AppQuit <- poll
| _ => loop win
pure ()
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a, BABE—IERF . R, Ex0EE0, REsiTEER.

drawMain : (ConsoleI0 m, Draw m) => ST m () []
drawMain = do Just win <- initWindow 640 480
| Nothing => putStrLn "Can't open window"
loop win
closeWindow win

AT LAZE REPL A run 217E:

*Draw> :exec run drawMain

HEEHHEEO: TurtleGraphics

[l ] 280 —R ] EFE LBy, ZEBINA [EZ] kEL. —RBafiEhte
MEREE, EHEETIE, DEHREERSE . s, LF— %ﬁé%ﬁﬁ%ﬁm%ﬂ,%~¢%
B, DIXEMEEMEE . T —MrliTiEn.

interface TurtleGraphics (m : Type -> Type) where
Turtle : Type

start : Int -> Int -> ST m (Maybe Var) [addIfJust Turtle]
end : (t : Var) -> ST m () [Remove t Turtle]

fd : (t : Var) -> Int -> STm () [t ::: Turtle]
rt : (¢t : Var) => Int -=> ST m () [t ::: Turtle]
penup : (t : Var) -> ST m () [t ::: Turtle]
pendown : (t : Var) -> ST m () [t ::: Turtle]
col : (¢t : Var) -=> Col -> ST m () [t ::: Turtlel
render : (t : Var) -> ST m () [t ::: Turtlel

Al Draw —ff, BAIEHFE—MBLEARKGTS (XEMM stare) , WRTIIEOEHRZ EKF
LRI o HANAE —1 render 51k, EMRERE O H HEIC2HFIEIER - EH MDA — D]
HERRFIN TR, EE T —MRERIET’:

turtle : (ConsoleI0 m, TurtleGraphics m) => ST m () []
turtle = with ST do

Just t <- start 640 480

| Nothing => putStr "Can't make turtle\n"

col t yellow

fd t 100; rt t 90

col t green

fd t 100; rt t 90

col t red

fd t 100; rt t 90

col t blue

fd t 100; rt t 90

render t

end t

with ST do

7E turtle FHH with ST do &H [ X4 (>>=) MIIRA, EFAENR BT Monad Bi# ST HEIR Idris

HEREWRRILHE, ~dEaZlrarfett, BIbEH vich WAT LLBU/DFRERS, IR T
o
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TLIULHD, FATRTLUERT Surface HATH & MK (ERA T,

implementation Draw m => TurtleGraphics m where
Turtle = Surface {m}

¥13E 7 Turtle WEET=H Surface 25, BATEEE R Draw FEMLA A ERSLHIERA T o SRMIXIEARN
i, BALFEFHEELZER.: ,EJZLGE%, B —LEMREAEERL - FIBRITMUGEER R
FRN—1 Surface, E%?ﬁﬁ%—%ﬁﬁﬂué@%%‘w AT LB H A BERMEX — 5 -

B & BIRE

EAWRE— 1 WIRY RS, EFHALT Control.ST FE X HFRAISLIY.

data Composite : List Type -> Type

WRBENE - TEAEIE, LA sprit HEHABRANAA TR, H A8 N RIROIENEE .
Fln:

splitComp : (comp : Var) -> ST m () [comp ::: Composite [State Int, State Stringl]
splitComp comp = do [int, str] <- split comp
?whatNow

ﬁﬁﬁ split comp 2 ME & HE comp FIEELH State Int Al State String, H AR ENIFHEAEL
& int Ml str o WRFLATIEE whatNow FIR, BESFIIERM T HFIHEIIE:

int : Var
str : Var
comp : Var
m : Type -> Type
whatNow : STrans m () [int ::: State Int, str ::: State String, comp ::: State ()]
(\result => [comp ::: Composite [State Int, State String]l])

1_T$ ﬁaﬂ]EJEﬁTV?ﬁ/\%?EI’J SR int A str, T comp HIRAUNIBPEH M EITRA, R FIH RFEL
P o XRAT AT FA AR ZEREIRIRBOYIM L BRI C -

IMAERATIREE THIL PR, T EEBRIEEN] (tban, ¥ nt 808 String WINHRTT) FHAFH
combine ELFHIELE & HIH:

splitComp : (comp : Var) ->
STm () [comp ::: Composite [State Int, State String]]
splitComp comp = do [int, str] <- split comp
update int (+ 1)
update str (++ "\n")
combine comp [int, str]
?whatNow

FIRE, AR AR E whatNow HISREIEEE combine MITEA:

comp : Var
int : Var
str : Var
m : Type -> Type
whatNow : STrans m () [comp ::: Composite [State Int, State Stringl]
(\result => [comp ::: Composite [State Int, State Stringll)

FrLA combine MIVEFM Z2HZEEE I HEIRHRFENEHBK—1TE SR . EHUT combine ZHj, HIrR
BRI E GXEZE comp) HEAN State () -
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BE split fll combine HIRM, THETNIHEHRIFIRSIRMNENZEIRAR LK - split KIREINT:

split : (1bl : Var) -> {auto prf : InState 1lbl (Composite vars) res} ->
STrans m (VarList vars) res (\vs => mkRes vs ++ updateRes res prf (State ()))

s pre ZECHIER D ARR) 101 DN E G BR - ERE— P HE & RIS RIMRFIZ RS,
1M mkRes BRI G — XK ARSI - Bx)m, updateRes X R E & HIRNIRIHEH N State
O-

M combine PRELN 3T 3.

combine : (comp : Var) -> (vs : List Var) ->
{auto prf : InState comp (State ()) res} ->
{auto var_prf : VarsIn (comp :: vs) res} ->
STrans m () res (const (combineVarsIn res var_prf))

BExUH) pre ZEAR T HARHIR comp HIRTH state O - R YL, HATASBEHEMEENER -
B3 var_prf ZECERLLT call K] SubRes, TR I ol I HRIIESE & BRI E 22 B AF
T ARTHBIRSIER -

AT LAEET praw DLRAEFFTRZERIM IR, @i 8 A B IR 77 0ok L& ) TurtleGraphics
API-

SEH Turtle

WMAETNT SR F0E W — A SR E MR BIRE T - AT LUHE A BIEEH Turtle, ©
AE—"HT2ER surface, MUK —HRIREEZE - AL BT WAL FPRE . BOTEF— 1%
B2, TR T HRATEREH render B E2#I3| Surface FHIEH.

Turtle = Composite [Surface {m}, -- % E B
State Col, -—- [EEAEE)
State (Int, Int, Int, Bool), -- MZEWNIE /7 A&ERL
State (List Line)] -- JE YUl %2 12655

—% Line HIEREIGNE, &1L BEAMBEE L.

Line : Type
Line = ((Int, Int), (Int, Int), Col)

EEARLI stare, EREIE—DHH Turtle ™ (WIRANFHENLRE - -Nothing) - BATAWIIAILL
BFmEIT g, NEEFERESMAAN . &5, BATFIEMNAFEE K —ME &R RER.

start x y = do Just srf <- initWindow x y
| Nothing => pure Nothing
col <- new white
pos <- new (320, 200, 0, True)
lines <- new []
turtle <- new ()
combine turtle [srf, col, pos, lines]
pure (Just turtle)

RIGHEIN end, ERICEALIE . BAVEHWE SR, WNEXHE D, MERPrEMIZATER . i
FEFHATHEEH delete MER— State, FMHFTFEH split FEAEIRD P, H closeWindow T
R EPFE, RIEH delete MHIERIR:

end t = do [srf, col, pos, lines] <- split t
closeWindow srf; delete col; delete pos; delete lines; delete t
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MTHEERHE, BNFEN split 7 SR LRI — MM, RIGHELE R combine R ENA
B NEEIR. N, I penup AISEIL:

penup t = do [srf, col, pos, lines] <- split t -- SRS A TR
(x, y, d, _) <- read pos - T EZEAME
write pos (x, y, d, False) - B ﬂT/J\lEEJJ False
combine t [srf, col, pos, lines] -- AT A

VTR R AR EE AR E AR . SEEEAOYETT W Idris A fTHRH Y samples/ST/Graphics/Turtle.idr
o Z IR R L A AR

render t = do [srf, col, pos, lines] <- split t —— 7EE & T
filledRectangle srf (0, 0) (640, 480) black -- “ffilTH 5
drawAll srf !(read lines) -- [EYYE RS HIN %4
flip srf -- S XET LR R
combine t [srf, col, pos, lines]
Just ev <- poll

| Nothing => render t -— AREEE LT bk
case ev of
KeyUp _ => pure () -— HRT, TR
_ => render t
where drawAll : (srf : Var) -> List Line -> ST m () [srf ::: Surface {m}]
drawAll srf [] = pure (O
drawAll srf ((start, end, col) :: xs)
= do drawLine srf start end col - FAR R B (B £ 5%

drawAll srf xs

3.5 . MZ% Socket FmfE

POSIX RIS H (Socket, FAME [EHT] ) AP SCFFES ML HIHRERDE S o 6 0 FoR M 248 (5 3
A ERTRERUN JUMHRAS Z —:

o Ready MWK
o Bound F/nOUYFEE A HILE, MEREZE N MEE:
« Listening F/RIEERITR ARIER
« Open FIRifE& AR B E R
o Closed /A NFIEEN
TR TZ APL R ELARIER AN AECE BURASH) . B Ready HWTIRIRAS:
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Bind

Listen

Accept

Accept (create)

Close

WRIFEANERS open IR, ARATATAT LIH send KA TH B ENZEEN A —dm, WA LI recv MA—
SR WA S -

contrib EFEME T —> Network.Socket #HR, ZIEEERFEME | QIR O DL Ak MO BRI IR E - H
RS LUT AL

bind : (sock : Socket) -> (addr : Maybe SocketAddress) -> (port : Port) -> IO Int

connect : (sock : Socket) -> (addr : SocketAddress) -> (port : Port) -> IO ResultCode
listen : (sock : Socket) -> IO Int

accept : (sock : Socket) -> IO (Either SocketError (Socket, SocketAddress))

send : (sock : Socket) -> (msg : String) -> I0 (Either SocketError ResultCode)

recv : (sock : Socket) -> (len : ByteLength) -> IO (Either SocketError (String, ResultCode))
close : Socket -> IO ()

?&%7)‘@ T LR ETE BRSERS, IRTITAS AR AR X LR R A e HAR R A | flan, 3
ﬂ]méﬁ_f E— AR RN LA R, BEE AR D R W EIETEE -

FATTAT LA ST $RALEELFH) API, E*%Eﬁ%f@%ﬁ%%Tﬁ ?M’EEZZM‘JE”HI’]L%E’HK H o FEATT A, ]
SEN—1EH APL REHEREI—1 [HE (echo) | IRF5E, MHIdFHIREZ P 3 & 1% HITH B
SR R 7 P U AT K o

3.5.1 EX Sockets BN

HATANERH 10 HATRER DM, TRM ST LI — P 1 AN A S D BB AN TR )
WA, AR QB MIERTE D - A TE e tldmd i O GRS r R AL

data SocketState = Ready | Bound | Listening | Open | Closed

EEEL 1A, H sock RAFIRIEA, LIE LS EPIRESIENIZREM ETHIZEL

interface Sockets (m : Type -> Type) where
Sock : SocketState -> Type

FATH socket FIEQIENE N - FHOEFE XL T SocketType, EFiiA TN TCP~ UDP &2
B BNEHES—EEH Stream KFER TCP i -

socket : SocketType -> ST m (Either () Var) [addIfRight (Sock Ready)]

0¥ addIfRight S7EBRIELRAVEN Right val BHARIIETIR . #HEILEE O HIAE, %aﬂlﬁﬁ Either
RFRTBERMERIE, En URGFEM X TERAMINGEE - wtt—3Fk, HATEE— B H
addIfRight FIE BRI RKELT -
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WAEARTE L —PIRSSES . —HREANOIE THA, MFEH bind FERERER —PMimH L.

bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->
ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed “or” Sock Bound)]

PRERH ARER R, NI R CER — RO E SIS E R L, R E RIS E — 1 R A,
Either MMH . XERBNIEMA T XEREL or, EMEER:

o # bind KM, fHOM 2] Sock Closed R

o % bind ), FOMEFEHEE Sock Bound KA, WIETEIFTR
or HISLEIAN T :

or : a ->a -> Either bc -> a
or x y = either (const x) (const y)

XK, bind FRAEES N N EMIE

bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->
STrans m (Either () ()) [sock ::: Sock Ready]
(either [sock ::: Sock Closed] [sock ::: Sock Bound])

SR, A or ZEMMEN, CHEERATREERB B EIRERBE, R RZIE 7 e LM

Jit o

— BN OHER] 7m0, BT LTI Sk B2 P o BERE 7

listen : (sock : Var) ->
ST m (Either () ()) [sock ::: Sock Bound :-> (Sock Closed “or~ Sock Listening)]

Listening RASHIHH IR E G A B ML - Im 1% #2

accept : (sock : Var) ->
ST m (Either () Var)
[sock ::: Sock Listening, addIfRight (Sock Open)]

WRA R (8 AI)EEE . accept RAERIRSIRIEERIN—THRGIE (FLHAE, EIIRARE
B A AR S C & updatewith TAE, &0 E—T7FTik )oﬂf,&MﬁTﬁAED.—A%5“%
RARERE, A—MEES5% PR -

HATEFEREB TR O - A AR R R 1 77 1

send : (sock : Var) -> String ->

ST m (Either () ()) [sock ::: Sock Open :-> (Sock Closed ~or™ Sock Open)]
recv : (sock : Var) ->
ST m (Either () String) [sock ::: Sock Open :-> (Sock Closed “or”~ Sock Open)]

—HENE R — Ve Bl O FTrhEEE R, MTFEH close RIAEREHH remove BFRIZIH

close : (sock : Var) ->

{auto prf : CloseOK st} -> ST m () [sock ::: Sock st :-> Sock Closed]
remove : (sock : Var) ->

ST m () [Remove sock (Sock Closed)]

close M T E CloseOk 1ENFEZIEZEL, Tk 1 rBS AT LIS 1 -

data CloseOK : SocketState -> Type where
CloseOpen : CloseOK Open
CloselListening : CloseOK Listening
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WAV, ALK open RSN, HiFH—EHLAEIEERE - BAOTHATLLLH] Listening HK
ASTERENERNTED, XRLRSH/ELEZIER.

fKTJEP ?*MI];@)LT“/\WR%% AR T RN, BATEFREER — e Vles LSS P im ke
ARE5 2% o XA LAY connect RFEM:

connect : (sock : Var) -> SocketAddress -> Port —>
ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed “or”~ Sock Open)]

LAUN BRI O E NS5

interface Sockets (m : Type -> Type) where
Sock : SocketState -> Type
socket : SocketType -> ST m (Either () Var) [addIfRight (Sock Ready)]
bind : (sock : Var) -> (addr : Maybe SocketAddress) -> (port : Port) ->

ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed “or~ Sock Bound)]
listen : (sock : Var) ->
ST m (Either () ()) [sock ::: Sock Bound :-> (Sock Closed “or” Sock Listening)]
accept : (sock : Var) ->
ST m (Either () Var) [sock ::: Sock Listening, addIfRight (Sock Open)]
connect : (sock : Var) -> SocketAddress -> Port ->
ST m (Either () ()) [sock ::: Sock Ready :-> (Sock Closed “or~ Sock Open)]
close : (sock : Var) -> {auto prf : CloseOK st} ->
ST m () [sock ::: Sock st :-> Sock Closed]

remove : (sock : Var) -> ST m () [Remove sock (Sock Closed)]
send : (sock : Var) -> String ->

ST m (Either () ()) [sock ::: Sock Open :-> (Sock Closed “or” Sock Open)]
recv : (sock : Var) ->
ST m (Either () String) [sock ::: Sock Open :-> (Sock Closed “or” Sock Open)]

TNV B RNWNASEINE o X B A ER S #0A] LU R R R0 0 API 48 10 FEEHl. Ay
%, TS BRNFHXLE APT SZ—4 [EE] RS-

3.5.2 FH Sockets SEHL [ & | ARS8

NTZE Ui, FATHIEE (echo) MRS ESFEI WAL RS G HIRT A, BEMFAH T ConsoleIn
Sockets B -

startServer : (ConsoleI0 m, Sockets m) => ST m () []

Ef‘ﬁ&‘ﬂ] SEH socket QIE—MED, R — im0 F BT EARER .. TARESKM, FIbEA]
Tr A FEEIR[A Right sock MM, HH sock &FH L E, Nt FEiRMA Left err:

startServer : (ConsoleI0 m, Sockets m) => ST m () []
startServer =
do Right sock <- socket Stream
| Left err => pure ()
?whatNow

A E FH SE X R R AR DA AL, AT OB U0 R Z P AR RIS 2 i 28 (LAY
TERINVAR T socket Z): BNTEE T Ready IRASAIH L :

sock : Var

m : Type -> Type
constraint : ConsoleI0 m
constraintl : Sockets m

whatNow : STrans m () [sock ::: Sock Ready] (\resultl => [])
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BE, BNFEFHROAER M, WETaEIER . FfE, S PEARSAK, BRI 2EkR
I - KRS 2 S EUE O Closed KA, MU FATREMATHZE M remove BIRE:

startServer : (ConsoleI0 m, Sockets m) => ST m () []

startServer =
do Right sock <- socket Stream | Left err => pure O
Right ok <- bind sock Nothing 9442 | Left err => remove sock
Right ok <- listen sock | Left err => remove sock
?runServer

Ba, BAIAE T — PR AERRE A

ok : O
sock : Var
okl : Q)

m : Type -> Type
constraint : ConsoleI0 m
constraintl : Sockets m

runServer : STrans m () [sock ::: Sock Listening]
(\resultl => [])

BATSHE— AL IR B LT - runServer RIS FEAT echoServer HIZRTLMNR 4 (ﬁ:m
TFEERH T Sock AHSE( m) -

echoServer : (ConsoleI0 m, Sockets m) => (sock : Var) ->
ST m () [remove sock (Sock {m} Listening)]

AT LASER startServer FIRE X:

startServer : (ConsoleIO0 m, Sockets m) => ST m () []

startServer =
do Right sock <- socket Stream | Left err => pure ()
Right ok <- bind sock Nothing 9442 | Left err => remove sock
Right ok <- listen sock | Left err => remove sock

echoServer sock

£ echoServer ', FASMREELZHMPIERES IR, BERFBA S KA O HRE  FAINE
IR R AREETT A

echoServer : (ConsoleI0 m, Sockets m) => (sock : Var) ->
ST m () [remove sock (Sock {m} Listening)]
echoServer sock =
do Right new <- accept sock | Left err => do close sock; remove sock
?whatNow

#i accept KM, FATMFTZERM Listening IO HAEREIRIFEFRE, KA echoServer KA
FRAA -

W, R echoServer FIRETA TR LIEEH Lt B RE Y B APIRES -tk accept Y, A4
HATBLER sock SYKEEIRITIERE, MAN—1H) new i H 2HHTIFHTHEE:

new : Var
sock : Var
m : Type -> Type
constraint : ConsoleI0 m
constraintl : Sockets m
whatNow : STrans m () [sock ::: Sock Listening, new ::: Sock Open]
(\resultl => [1)
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ESZH echoServer, A 1FEEM new ﬁﬁ[]li%%Wﬁ“zr{ﬁ,un WYY EST o FEFERUE, FRATEE ]
new i, SRIGEF] echoServer BIFFIAAL, VEAMN N —IX Zﬁﬁ(

echoServer : (ConsoleI0 m, Sockets m) => (sock : Var) ->
ST m () [remove sock (Sock {m} Listening)]
echoServer sock =
do Right new <- accept sock | Left err => do close sock; remove sock
Right msg <- recv new | Left err => do close sock; remove sock; remove new
Right ok <- send new ("You said " ++ msg)
| Left err => do remove new; close sock; remove sock
close new; remove new; echoServer sock

3.5.3 SEH Sockets

T HE 10 F5LH Sockets, FAIFEML M BMAH) sock RETFG T AT VR ARG D APT (£
Network.Socket H1SKHL) , ¥ Socket fFH#TE State TR BIRMRA, MiALL KL% O BTt
EiHEEINA

implementation Sockets IO where
Sock _ = State Socket

KRS T AT LA ECHE A B A M3 [ APT JRSEHL, SREMIRIEY Left 3¢ Right. (I, Fef1m7 LASEHL

socket - bind Fl listen:

socket ty = do Right sock <- 1lift $ Socket.socket AF_INET ty O
| Left err => pure (Left ())
1bl <- mnew sock
pure (Right 1bl)
bind sock addr port = do ok <- lift $ bind !(read sock) addr port
if ok /= 0
then pure (Left ())
else pure (Right ())
listen sock = do ok <- lift $ listen !(read sock)
if ok /=0
then pure (Left ()
else pure (Right ())

IRT, XEA accept HEAFE, HEABNEH new NITHERE QB RN, ©HIAE T BRI EL
RIRATAERE - JATe] LB 5 HAEEAE R ERIX—5, ] returning K& HIRE Right
1bl FEA 4 B

accept sock = do Right (conn, addr) <- 1lift $ accept !(read sock)
| Left err => pure (Left ())
1bl <- new conn
returning (Right 1bl) ?7fixResources

] new 4%3:%{7 AINEFRRIR AL RARTTER), OB HE RV, X2k Idris AR auto HEhHE
WS Sy - 3 —TJ5TH, é?ﬁafl]ﬁﬁ call RME /N BFRE SRS, updatewith 2 REHTOIER I BT AL
251 i%EI’JEK%L PR Dl 5 3R 2 D 5 E T HE ) B R Eﬁé&zae

WRBATEE fixResources MIRAL, FLAHFLELEH accept T2 M-

_bindAppO : Socket
conn : Socket

addr : SocketAddress
sock : Var

1bl : Var

(8yNeéatezgeam)
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(cznayLéat)
fixResources : STrans I0 () [1bl ::: State Socket, sock ::: State Socket]
(\value => [sock ::: State Socket, 1bl ::: State Socket])

X ET IR R AIF N 1b1 ~ sock, MEANIFTEENIMINFA R sock~ 1bl- AL, Control.ST FEfit
TR toEnd, ESW—1MHIFERIFIRFIAKRE - XHERNTHAETE accept T :

accept sock = do Right (conn, addr) <- 1lift $ accept ! (read sock)
| Left err => pure (Left ())
1bl <- new conn
returning (Right 1bl) (toEnd 1bl)

Sockets MISEEESLIL I Idris Z1ThH Y samples/ST/Net/Network.idr 3UHF . Rt AT AZER HRK FH
EchoServer.idr X HH#HE| A E RS - WIMNAE — 1T EH LMY RandServer.idr, EETIEKZE
FHE O APL, GERESHPLRIER LI T — MR RSB T - B H&ER TP AR E AR
3R o ARA] LIZE Edwin Brady BT State Machines All The Way Down| (RAFEMIRSNL) HH 3%
TRAEFBENLE RSS2 ) BE 2115 -
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CHAPTER 4

The Effects Tutorial

A tutorial on the Effects package in Idris.

Effects and the Control.ST module

There is a new module in the contrib package, Control.ST, which provides the resource tracking
facilities of Effects but with better support for creating and deleting resources, and implementing
resources in terms of other resources.

Unless you have a particular reason to use Effects you are strongly recommended to use Control.ST
instead. There is a tutorial available on this site for Control.ST with several examples (fH Idris SZI)

M E KA 2D ST 20k (éat 69)).

#f#: The documentation for Idris has been published under the Creative Commons CCO License. As
such to the extent possible under law, The Idris Community has waived all copyright and related or
neighbouring rights to Documentation for Idris.

More information concerning the CCO can be found online at: |http://creativecommons.org/
publicdomain /zero/1.0/

4.1 Introduction

Pure functional languages with dependent types such as Idris support reasoning about programs directly
in the type system, promising that we can know a program will run correctly (i.e. according to the
specification in its type) simply because it compiles. Realistically, though, things are not so simple:
programs have to interact with the outside world, with user input, input from a network, mutable state,
and so on. In this tutorial I will introduce the library, which is included with the distribution and supports
programming and reasoning with side-effecting programs, supporting mutable state, interaction with the
outside world, exceptions, and verified resource management.

102


http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://www.idris-lang.org/

Idris 155 308, R 1.3.1

This tutorial assumes familiarity with pure programming in Idris, as described in Sections 1-6 of the
main tutoriaﬂ The examples presented are tested with Idris and can be found in the examples directory
of the Idris repository.

Consider, for example, the following introductory function which illustrates the kind of properties which
can be expressed in the type system:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] 1 =0
vadd (x :: xs) (y :: ys) =x +7y :: vadd xs ys

This function adds corresponding elements in a pair of vectors. The type guarantees that the vectors
will contain only elements of type Int, and that the input lengths and the output length all correspond.
A natural question to ask here, which is typically neglected by introductory tutorials, is “How do I turn
this into a program?” That is, given some lists entered by a user, how do we get into a position to be
able to apply the vadd function? Before doing so, we will have to:

e Read user input, either from the keyboard, a file, or some other input device.

e Check that the user inputs are valid, i.e. contain only Int and are the same length, and report an
error if not.

o Write output

The complete program will include side-effects for I/O and error handling, before we can get to the pure
core functionality. In this tutorial, we will see how Idris supports side-effects. Furthermore, we will see
how we can use the dependent type system to reason about stateful and side-effecting programs. We
will return to this specific example later.

4.1.1 Hello world

To give an idea of how programs with effects look, here is the ubiquitous “Hello world” program,
written using the Effects library:

module Main

import Effects
import Effect.StdIO

hello : Eff () [STDIO]
hello = putStrLn "Hello world!"

main : I0 O
main = run hello

As usual, the entry point is main. All main has to do is invoke the hello function which supports the
STDIO effect for console I/0O, and returns the unit value. All programs using the Effects library must
import Effects. The details of the Eff type will be presented in the remainder of this tutorial.

To compile and run this program, Idris needs to be told to include the Effects package, using the -p
effects flag (this flag is required for all examples in this tutorial):

idris hello.idr -o hello -p effects
./hello Hello world!

1 You do not, however, need to know what a monad is!
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4.1.2 OQutline

The tutorial is structured as follows: first, in Section (éat 104), we will discuss state management,
describing why it is important and introducing the effects library to show how it can be used to manage
state. This section also gives an overview of the syntax of effectful programs. Section
(éat 111) then introduces a number of other effects a program may have: 1/0; Exceptions; Random
Numbers; and Non-determinism, giving examples for each, and an extended example combining several
effects in one complete program. Section [Dependent Effects| (éat 118) introduces dependent effects,
showing how states and resources can be managed in types. Section |Creating New Effects| (éat 123)
shows how new effects can be implemented. Section [Ezample: A - Mystery Word  Guessing Game
(éat 127) gives an extended example showing how to implement a “mystery word” guessing game,
using effects to describe the rules of the game and ensure they are implemented accurately. References
to further reading are given in Section [Further Reading| (éat 132).

4.2 State

Many programs, even pure programs, can benefit from locally mutable state. For example, consider a
program which tags binary tree nodes with a counter, by an inorder traversal (i.e. counting depth first,
left to right). This would perform something like the following:

@ O©O—O &
@ © (o962

We can describe binary trees with the following data type BTree and testTree to represent the example
input above:

data BTree a = Leaf
| Node (BTree a) a (BTree a)

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)
"Fred"
(Node (Node Leaf "Alice" Leaf)
"Sheila"
(Node Leaf "Bob" Leaf))

Then our function to implement tagging, beginning to tag with a specific value i, has the following type:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
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4.2.1 First attempt

Navely, we can implement treeTag by implementing a helper function which propagates a counter,
returning the result of the count for each subtree:

treeTaghux : (i : Int) -> BTree a -> (Int, BTree (Int, a))
treeTagAux i Leaf = (i, Leaf)
treeTaghux i (Node 1 x r)
= let (i', 1') = treeTaghux i 1 in
let x' = (i', x) in
let (i'', r') = treeTagAux (i' + 1) r in
(i'', Node 1' x' r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = snd (treeTaghAux i x)

This gives the expected result when run at the REPL prompt:

*TreeTag> treeTag 1 testTree
Node (Node Leaf (1, "Jim") Leaf)
(2, "Fred")
(Node (Node Leaf (3, "Alice") Leaf)
(4, "Sheila")
(Node Leaf (5, "Bob") Leaf)) : BTree (Int, String)

This works as required, but there are several problems when we try to scale this to larger programs. It
is error prone, because we need to ensure that state is propagated correctly to the recursive calls (i.e.
passing the appropriate i or i’ ). It is hard to read, because the functional details are obscured by
the state propagation. Perhaps most importantly, there is a common programming pattern here which
should be abstracted but instead has been implemented by hand. There is local mutable state (the
counter) which we have had to make explicit.

4.2.2 Introducing Effects

Idris provides a library, EffectsEL which captures this pattern and many others involving effectful
computatiorﬂ An effectful program f has a type of the following form:

f @ (xl:al) -> (x2 : a2) -> ... -> Eff t effs

That is, the return type gives the effects that £ supports (effs, of type List EFFECT) and the type the
computation returns t. So, our treeTagAux helper could be written with the following type:
treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE Int]

That is, treeTagAux has access to an integer state, because the list of available effects includes STATE

Int. STATE is declared as follows in the module Effect.State (that is, we must import Effect.State
to be able to use it):

STATE : Type -> EFFECT

It is an effect parameterised by a type (by convention, we write effects in all capitals). The treeTagAux
function is an effectful program which builds a new tree tagged with Ints, and is implemented as follows:

3 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9
(September 2013), 133-144. DOI=10.1145/2544174.2500581 http://dl.acm.org/citation.cfm?doid=2544174.2500581

1 The earlier paper® describes the essential implementation details, although the library presented there is an earlier
version which is less powerful than that presented in this tutorial.
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treeTagAux Leaf = pure Leaf
treeTagAux (Node 1 x r)
= do 1' <- treeTaghux 1
i <- get
put (i + 1)
r' <- treeTagAux r
pure (Node 1' (i, x) r')

There are several remarks to be made about this implementation. Essentially, it hides the state, which
can be accessed using get and updated using put, but it introduces several new features. Specifically, it
uses do-notation, binding variables with <-, and a pure function. There is much to be said about these
features, but for our purposes, it suffices to know the following:

e do blocks allow effectful operations to be sequenced.

e x <- e binds the result of an effectful operation e to a variable x. For example, in the
above code, treeTaghAux 1 is an effectful operation returning BTree (Int, a), so 1’ has
type BTree (Int, a).

e pure e turns a pure value e into the result of an effectful operation.

The get and put functions read and write a state t, assuming that the STATE t effect is available. They
have the following types, polymorphic in the state t they manage:

get : Eff t [STATE t]
put : t -> Eff () [STATE t]

A program in Eff can call any other function in Eff provided that the calling function supports at least
the effects required by the called function. In this case, it is valid for treeTagAux to call both get and
put because all three functions support the STATE Int effect.

Programs in Eff are run in some underlying computation contert, using the run or runPure function.
Using runPure, which runs an effectful program in the identity context, we can write the treeTag
function as follows, using put to initialise the state:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i
treeTaghAux x)

We could also run the program in an impure context such as I0, without changing the definition of
treeTagAux, by using run instead of runPure:

treeTaghux : BTree a -> Eff (BTree (Int, a)) [STATE Int]

treeTag : (i : Int) -> BTree a -> I0 (BTree (Int, a))
treeTag i x = run (do put i
treeTagAux x)

Note that the definition of treeTagAux is exactly as before. For reference, this complete program
(including a main to run it) is shown in Listing [introprog].
module Main

import Effects
import Effect.State

data BTree a = Leaf
| Node (BTree a) a (BTree a)

(85Néatezgca)
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(czndyLéat)

Show a => Show (BTree a) where
show Leaf = "[]"
show (Node 1 x r) = "[" ++ show 1 ++ " "
++ show x ++ " "
++ show r ++ "]"

testTree : BTree String
testTree = Node (Node Leaf "Jim" Leaf)
"Fred"
(Node (Node Leaf "Alice" Leaf)
"Sheila"
(Node Leaf "Bob" Leaf))

treeTaghux : BTree a -> Eff (BTree (Int, a)) [STATE Int]
treeTagAux Leaf = pure Leaf
treeTagAux (Node 1 x r) = do 1' <- treeTagAux 1

i <- get

put (i + 1)

r' <- treeTagAux r

pure (Node 1' (i, x) r')

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPure (do put i; treeTagAux x)

main : I0 O
main = print (treeTag 1 testTree)

4.2.3 Effects and Resources

Each effect is associated with a resource, which is initialised before an effectful program can be run. For
example, in the case of STATE Int the corresponding resource is the integer state itself. The types of
runPure and run show this (slightly simplified here for illustrative purposes):

runPure : {env : Env id xs} -> Eff a xs -> a
run : Applicative m => {env : Env m xs} -> Eff a xs -> m a

The env argument is implicit, and initialised automatically where possible using default values given by
implementations of the following interface:

interface Default a where
default : a

Implementations of Default are defined for all primitive types, and many library types such as List,
Vect, Maybe, pairs, etc. However, where no default value exists for a resource type (for example, you
may want a STATE type for which there is no Default implementation) the resource environment can be
given explicitly using one of the following functions:

runPureInit : Env id xs -> Eff a xs -> a
runlnit : Applicative m => Env m xs -> Eff a xs -> m a
To be well-typed, the environment must contain resources corresponding exactly to the effects in xs. For

example, we could also have implemented treeTag by initialising the state as follows:

treeTag : (i : Int) -> BTree a -> BTree (Int, a)
treeTag i x = runPurelnit [i] (treeTagAux x)
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4.2.4 Labelled Effects

What if we have more than one state, especially more than one state of the same type? How would
get and put know which state they should be referring to? For example, how could we extend the tree
tagging example such that it additionally counts the number of leaves in the tree? One possibility would
be to change the state so that it captured both of these values, e.g.:

treeTagAux : BTree a -> Eff (BTree (Int, a)) [STATE (Int, Int)]

Doing this, however, ties the two states together throughout (as well as not indicating which integer is
which). It would be nice to be able to call effectful programs which guaranteed only to access one of the
states, for example. In a larger application, this becomes particularly important.

The library therefore allows effects in general to be labelled so that they can be referred to explicitly by
a particular name. This allows multiple effects of the same type to be included. We can count leaves
and update the tag separately, by labelling them as follows:

treeTagAux : BTree a -> Eff (BTree (Int, a))

['Tag ::: STATE Int,
'Leaves ::: STATE Int]
The ::: operator allows an arbitrary label to be given to an effect. This label can be any type—it

is simply used to identify an effect uniquely. Here, we have used a symbol type. In general ’ name
introduces a new symbol, the only purpose of which is to disambiguate valuesﬂ

When an effect is labelled, its operations are also labelled using the :- operator. In this way, we can say
explicitly which state we mean when using get and put. The tree tagging program which also counts
leaves can be written as follows:

treeTagAux Leaf = do
'Leaves :- update (+1)
pure Leaf
treeTaghux (Node 1 x r) = do
1' <- treeTaghAux 1
i <- 'Tag :- get
'Tag :- put (i + 1)
r' <- treeTaghux r
pure (Node 1' (i, x) r')

The update function here is a combination of get and put, applying a function to the current state.
update : (x -> x) -> Eff () [STATE x]
Finally, our top level treeTag function now returns a pair of the number of leaves, and the new tree.

Resources for labelled effects are initialised using the := operator (reminiscent of assignment in an
imperative language):

treeTag : (i : Int) -> BTree a -> (Int, BTree (Int, a))

treeTag i x = runPurelnit ['Tag := i, 'Leaves := 0]
(do x' <- treeTagAux x
leaves <- 'Leaves :- get

pure (leaves, x'))

To summarise, we have:
e ::: to convert an effect to a labelled effect.

e :-to convert an effectful operation to a labelled effectful operation.

2 In practice, ' name simply introduces a new empty type
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e := to initialise a resource for a labelled effect.

Or, more formally with their types (slightly simplified to account only for the situation where available
effects are not updated):

(:::) : 1bl -> EFFECT -> EFFECT
(:=) : (1 : 1bl) -> Eff a [x] -> Eff a [1 ::: x]
(:=) : (1 : 1bl) -> res -> LRes 1 res

Here, LRes is simply the resource type associated with a labelled effect. Note that labels are polymorphic
in the label type 1bl. Hence, a label can be anything—a string, an integer, a type, etc.

4.2.5 I-potation

In many cases, using do-notation can make programs unnecessarily verbose, particularly in cases where
the value bound is used once, immediately. The following program returns the length of the String
stored in the state, for example:

stateLength : Eff Nat [STATE String]
stateLength = do x <- get
pure (length x)

This seems unnecessarily verbose, and it would be nice to program in a more direct style in these cases.
provides !-notation to help with this. The above program can be written instead as:

stateLength : Eff Nat [STATE String]

statelLength = pure (length !get)

The notation !expr means that the expression expr should be evaluated and then implicitly bound.
Conceptually, we can think of ! as being a prefix function with the following type:

(1) : Eff a xs > a

Note, however, that it is not really a function, merely syntax! In practice, a subexpression !expr will
lift expr as high as possible within its current scope, bind it to a fresh name x, and replace !expr with

x. Expressions are lifted depth first, left to right. In practice, !-notation allows us to program in a more
direct style, while still giving a notational clue as to which expressions are effectful.

For example, the expression:

let y = 42 in f !(g !(print y) !x)

is lifted to:

let y = 42 in do y' <- print y

x' <- x
gl <_ g yl XI
fg'

4.2.6 The Type Eff

Underneath, Eff is an overloaded function which translates to an underlying type EffM:

EffM : (m : Type -> Type) -> (t : Type)
-> (List EFFECT)
-> (t -> List EFFECT) -> Type

4.2. State 109



Idris 155 308, R 1.3.1

This is more general than the types we have been writing so far. It is parameterised over an underlying
computation context m, a result type t as we have already seen, as well as a List EFFECT and a function
type t -> List EFFECT.

These additional parameters are the list of input effects, and a list of output effects, computed from
the result of an effectful operation. That is: running an effectful program can change the set of effects
available! This is a particularly powerful idea, and we will see its consequences in more detail later.
Some examples of operations which can change the set of available effects are:

« Updating a state containing a dependent type (for example adding an element to a vector).

e Opening a file for reading is an effect, but whether the file really is open afterwards depends on
whether the file was successfully opened.

o Closing a file means that reading from the file should no longer be possible.

While powerful, this can make uses of the EffM type hard to read. Therefore the library provides an
overloaded function Eff There are the following three versions:

SimpleEff .Eff : (t : Type) -> (input_effs : List EFFECT) -> Type
TransEff .Eff : (t : Type) -> (input_effs : List EFFECT) ->
(output_effs : List EFFECT) -> Type
DepEff .Eff : (t : Type) -> (input_effs : List EFFECT) ->
(output_effs_fn : t -> List EFFECT) -> Type
So far, we have used only the first version, SimpleEff.Eff, which is defined as follows:
Eff : (x : Type) -> (es : List EFFECT) -> Type
Eff x es = {m : Type -> Type} -> EffM m x es (\v => es)

i.e. the set of effects remains the same on output. This suffices for the STATE example we have seen
so far, and for many useful side-effecting programs. We could also have written treeTagAux with the
expanded type:

treeTagAux : BTree a ->
EffM m (BTree (Int, a)) [STATE Int] (\x => [STATE Int])

Later, we will see programs which update effects:

Eff a xs xs'

which is expanded to

EffM m a xs (\_ => xs')

i.e. the set of effects is updated to xs’ (think of a transition in a state machine). There is, for example,
a version of put which updates the type of the state:

putM : y -> Eff () [STATE x] [STATE y]

Also, we have:

Eff t xs (\res => xs')

which is expanded to

EffM m t xs (\res => xs')

i.e. the set of effects is updated according to the result of the operation res, of type t.
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Parameterising EffM over an underlying computation context allows us to write effectful programs which
are specific to one context, and in some cases to write programs which extend the list of effects available
using the new function, though this is beyond the scope of this tutorial.

4.3 Simple Effects

So far we have seen how to write programs with locally mutable state using the STATE effect. To recap,
we have the definitions below in a module Effect.State

module Effect.State

STATE : Type -> EFFECT

get : Eff x [STATE x]
put x> Eff () [STATE x]
putM  : y -> Eff () [STATE x] [STATE y]

update : (x -> x) -> Eff () [STATE x]

Handler State m where { ... }

The last line, Handler State m where { ... }, means that the STATE effect is usable in any compu-
tation context m. That is, a program which uses this effect and returns something of type a can be
evaluated to something of type m a using run, for any m. The lower case State is a data type describing
the operations which make up the STATE effect itself—we will go into more detail about this in Section
[Creating New Effects| (éat 123).

In this section, we will introduce some other supported effects, allowing console I/0, exceptions, random
number generation and non-deterministic programming. For each effect we introduce, we will begin with
a summary of the effect, its supported operations, and the contexts in which it may be used, like that
above for STATE, and go on to present some simple examples. At the end, we will see some examples of
programs which combine multiple effects.

All of the effects in the library, including those described in this section, are summarised in Appendix
[Effects Summary| (éat 133).

4.3.1 Console I/0O

Console I/0 is supported with the STDIO effect, which allows reading and writing characters and strings to
and from standard input and standard output. Notice that there is a constraint here on the computation
context m, because it only makes sense to support console I/O operations in a context where we can
perform (or at the very least simulate) console I/0:

module Effect.StdIO

STDIO : EFFECT

putChar : Char -> Eff () [STDIO]
putStr  : String -> Eff () [STDIO]

putStrLn : String -> Eff () [STDIO]

getStr Eff String [STDIO]
getChar : Eff Char [STDIO]

Handler StdI0 IO where { ... }
Handler StdI0 (IOExcept a) where { ... }
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Examples

A program which reads the user’ s name, then says hello, can be written as follows:

hello : Eff () [STDIO]
hello = do putStr "Name? "
x <- getStr
putStrLn ("Hello " ++ trim x ++ "!")

We use trim here to remove the trailing newline from the input. The resource associated with STDIO is
simply the empty tuple, which has a default value (), so we can run this as follows:

main : I0 Q)
main = run hello

In hello we could also use !-notation instead of x <- getStr, since we only use the string that is read
once:

hello : Eff () [STDIO]
hello = do putStr "Name? "
putStrLn ("Hello " ++ trim !getStr ++ "!")

More interestingly, we can combine multiple effects in one program. For example, we can loop, counting
the number of people we’ ve said hello to:

hello : Eff () [STATE Int, STDIO]
hello = do putStr "Name? "
putStrLn ("Hello " ++ trim !getStr ++ "I")
update (+1)
putStrLn ("I've said hello to: " ++ show !get ++ " people")
hello

The list of effects given in hello means that the function can call get and put on an integer state, and
any functions which read and write from the console. To run this, main does not need to be changed.

Aside: Resource Types

To find out the resource type of an effect, if necessary (for example if we want to initialise a resource
explicitly with runInit rather than using a default value with run) we can run the resourceType
function at the REPL:

*ConsoleI0> resourceType STDIO

() : Type
*ConsoleI0> resourceType (STATE Int)
Int : Type

4.3.2 Exceptions

The EXCEPTION effect is declared in module Effect.Exception. This allows programs to exit immedi-
ately with an error, or errors to be handled more generally:

module Effect.Exception

EXCEPTION : Type -> EFFECT

(8 Néatezggan)
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(czndyLéat)
raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }
Handler (Exception a) List where { ... }

Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }

Example

Suppose we have a String which is expected to represent an integer in the range 0 to n. We can write
a function parseNumber which returns an Int if parsing the string returns a number in the appropriate
range, or throws an exception otherwise. Exceptions are parameterised by an error type:

data Error = NotANumber | OutOfRange

parseNumber : Int -> String -> Eff Int [EXCEPTION Error]
parseNumber num str
= if all isDigit (unpack str)
then let x = cast str in
if (x >=0 && x <= num)
then pure x
else raise OutOfRange
else raise NotANumber

Programs which support the EXCEPTION effect can be run in any context which has some way of throwing
errors, for example, we can run parseNumber in the Either Error context. It returns a value of the
form Right x if successful:

*Exception> the (Either Error Int) $ run (parseNumber 42 "20")
Right 20 : Either Error Int
Or Left e on failure, carrying the appropriate exception:

*Exception> the (Either Error Int) $ run (parseNumber 42 "50")
Left OutOfRange : Either Error Int

*Exception> the (Either Error Int) $ run (parseNumber 42 "twenty")
Left NotANumber : Either Error Int

In fact, we can do a little bit better with parseNumber, and have it return a proof that the integer is in
the required range along with the integer itself. One way to do this is define a type of bounded integers,
Bounded:

Bounded : Int -> Type
Bounded x = (n : Int ** So (n >= 0 && n <= x))

Recall that So is parameterised by a Bool, and only So True is inhabited. We can use choose to
construct such a value from the result of a dynamic check:

data So : Bool -> Type = Oh : So True

choose : (b : Bool) -> Either (So b) (So (not b))

We then write parseNumber using choose rather than an if/then/else construct, passing the proof it
returns on success as the boundedness proof:
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parseNumber : (x : Int) -> String -> Eff (Bounded x) [EXCEPTION Error]
parseNumber x str
= if all isDigit (unpack str)
then let num = cast str in
case choose (num >=0 && num <= x) of
Left p => pure (num ** p)
Right p => raise OutOfRange
else raise NotANumber

4.3.3 Random Numbers

Random number generation is also implemented by the library, in module Effect .Random:

module Effect.Random

RND : EFFECT

srand : Integer -> Eff () [RND]

rndInt : Integer -> Integer -> Eff Integer [RND]
rndFin : (k : Nat) -> Eff (Fin (S k)) [RND]
Handler Random m where { ... }

Random number generation is considered side-effecting because its implementation generally relies on
some external source of randomness. The default implementation here relies on an integer seed, which
can be set with srand. A specific seed will lead to a predictable, repeatable sequence of random numbers.
There are two functions which produce a random number:

e rndInt, which returns a random integer between the given lower and upper bounds.

o rndFin, which returns a random element of a finite set (essentially a number with an up-
per bound given in its type).

Example

We can use the RND effect to implement a simple guessing game. The guess function, given a target
number, will repeatedly ask the user for a guess, and state whether the guess is too high, too low, or
correct:

guess : Int -> Eff () [STDIO]

For reference, the code for guess is given below:

guess : Int -> Eff () [STDIO]
guess target
= do putStr "Guess: "
case run {m=Maybe} (parseNumber 100 (trim !getStr)) of
Nothing => do putStrLn "Invalid input"
guess target
Just (v **x _) =>
case compare v target of
LT => do putStrLn "Too low"
guess target
EQ => putStrLn "You win!"
GT => do putStrLn "Too high"
guess target
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Note that we use parseNumber as defined previously to read user input, but we don’ t need to list
the EXCEPTION effect because we use a nested run to invoke parseNumber, independently of the calling
effectful program.

To invoke this, we pick a random number within the range 0-100, having set up the random number
generator with a seed, then run guess:

game : Eff () [RND, STDIO]

game = do srand 123456789

guess (fromInteger !(rndInt O 100))
main : I0 ()
main = run game

If no seed is given, it is set to the default value. For a less predictable game, some better source of
randomness would be required, for example taking an initial seed from the system time. To see how to
do this, see the SYSTEM effect described in Effects Summary| (éat 133).

4.3.4 Non-determinism

The listing below gives the definition of the non-determinism effect, which allows a program to choose a
value non-deterministically from a list of possibilities in such a way that the entire computation succeeds:

import Effects
import Effect.Select

SELECT : EFFECT

select : List a -> Eff a [SELECT]

Handler Selection Maybe where { ... }
Handler Selection List where { ... }
Example

The SELECT effect can be used to solve constraint problems, such as finding Pythagorean triples. The
idea is to use select to give a set of candidate values, then throw an exception for any combination of
values which does not satisfy the constraint:

triple : Int -> Eff (Int, Int, Int) [SELECT, EXCEPTION String]
triple max = do z <- select [1..max]
y <- select [1..z]
x <- select [1..y]
if (x *x x+y*xy==2%2)
then pure (x, y, 2z)
else raise "No triple"

This program chooses a value for z between 1 and max, then values for y and x. In operation, after a
select, the program executes the rest of the do-block for every possible assignment, effectively searching
depth-first. If the list is empty (or an exception is thrown) execution fails.

There are handlers defined for Maybe and List contexts, i.e. contexts which can capture failure. De-
pending on the context m, triple will either return the first triple it finds (if in Maybe context) or all
triples in the range (if in List context). We can try this as follows:
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main : I0 O
main = do print $ the (Maybe _) $ run (triple 100)
print $ the (List _) $ run (triple 100)

4.3.5 vadd revisited

We now return to the vadd program from the introduction. Recall the definition:

vadd : Vect n Int -> Vect n Int -> Vect n Int
vadd [] 1 =[]
vadd (x :: xs) (y :: ys) =x +y :: vadd xs ys

Using , we can set up a program so that it reads input from a user, checks that the input is valid (i.e
both vectors contain integers, and are the same length) and if so, pass it on to vadd. First, we write a
wrapper for vadd which checks the lengths and throw an exception if they are not equal. We can do this
for input vectors of length n and m by matching on the implicit arguments n and m and using decEq to
produce a proof of their equality, if they are equal:

vadd_check : Vect n Int -> Vect m Int ->
Eff (Vect m Int) [EXCEPTION String]
vadd_check {n} {m} xs ys with (decEq n m)
vadd_check {n} {m=n} xs ys | (Yes Refl) = pure (vadd xs ys)
vadd_check {n} {m} =xs ys | (No contra) = raise "Length mismatch"

To read a vector from the console, we implement a function of the following type:

read_vec : Eff (p *x Vect p Int) [STDIO]

This returns a dependent pair of a length, and a vector of that length, because we cannot know in
advance how many integers the user is going to input. We can use -1 to indicate the end of input:

read_vec : Eff (p *x Vect p Int) [STDIO]
read_vec = do putStr "Number (-1 when done): "
case run (parseNumber (trim !getStr)) of
Nothing => do putStrLn "Input error"
read_vec
Just v => if (v /= -1)
then do (_ ** xs) <- read_vec
pure (_ ** v :: xs)
else pure (_ *x [1)
where
parseNumber : String -> Eff Int [EXCEPTION String]
parseNumber str
= if all (\x => isDigit x || x == '-') (unpack str)
then pure (cast str)
else raise "Not a number"

This uses a variation on parseNumber which does not require a number to be within range.

Finally, we write a program which reads two vectors and prints the result of pairwise addition of them,
throwing an exception if the inputs are of differing lengths:

do_vadd : Eff () [STDIO, EXCEPTION String]
do_vadd = do putStrLn "Vector 1"

(_ ** xs) <- read_vec

putStrLn "Vector 2"

(_ ** ys) <- read_vec

putStrLn (show !(vadd_check xs ys))
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By having explicit lengths in the type, we can be sure that vadd is only being used where the lengths of
inputs are guaranteed to be equal. This does not stop us reading vectors from user input, but it does
require that the lengths are checked and any discrepancy is dealt with gracefully.

4.3.6 Example: An Expression Calculator

To show how these effects can fit together, let us consider an evaluator for a simple expression language,
with addition and integer values.

data Expr = Val Integer
| Add Expr Expr

An evaluator for this language always returns an Integer, and there are no situations in which it can
fail!

eval : Expr -> Integer
eval (Val x)

=x
eval (Add 1 r) =

eval 1 + eval r

If we add variables, however, things get more interesting. The evaluator will need to be able to access
the values stored in variables, and variables may be undefined.

data Expr = Val Integer
| Var String
|

Add Expr Expr

To start, we will change the type of eval so that it is effectful, and supports an exception effect for
throwing errors, and a state containing a mapping from variable names (as String) to their values:

Env : Type
Env = List (String, Integer)

eval : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval (Val x) = pure x
eval (Add 1 r) = pure $ !(eval 1) + !(eval r)

Note that we are using !-notation to avoid having to bind subexpressions in a do block. Next, we add a
case for evaluating Var:

eval (Var x) = case lookup x !get of
Nothing => raise $ "No such variable " ++ x
Just val => pure val

This retrieves the state (with get, supported by the STATE Env effect) and raises an exception if the
variable is not in the environment (with raise, supported by the EXCEPTION String effect).

To run the evaluator on a particular expression in a particular environment of names and their values,
we can write a function which sets the state then invokes eval:

runEval : List (String, Integer) -> Expr -> Maybe Integer
runEval args expr = run (eval' expr)
where eval' : Expr -> Eff Integer [EXCEPTION String, STATE Env]
eval' e = do put args
eval e

We have picked Maybe as a computation context here; it needs to be a context which is available for
every effect supported by eval. In particular, because we have exceptions, it needs to be a context which
supports exceptions. Alternatively, Either String or I0 would be fine, for example.
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What if we want to extend the evaluator further, with random number generation? To achieve this, we
add a new constructor to Expr, which gives a random number up to a maximum value:

data Expr = Val Integer
| Var String

| Add Expr Expr
|

Random Integer
Then, we need to deal with the new case, making sure that we extend the list of events to include RND.
It doesn’ t matter where RND appears in the list, as long as it is present:

eval : Expr -> Eff Integer [EXCEPTION String, RND, STATE Env]

eval (Random upper) = rndInt O upper

For test purposes, we might also want to print the random number which has been generated:

eval (Random upper) = do val <- rndInt O upper
putStrLn (show val)
pure val

If we try this without extending the effects list, we would see an error something like the following:

Expr.idr:28:6:When elaborating right hand side of eval:
Can't solve goal
SubList [STDIO]
[(EXCEPTION String), RND, (STATE (List (String, Integer)))]

In other words, the STDIO effect is not available. We can correct this simply by updating the type of
eval to include STDIO.

eval : Expr -> Eff Integer [STDIO, EXCEPTION String, RND, STATE Env]

JEf#: Using STDIO will restrict the number of contexts in which eval can be run to those which support
STDIO, such as I0. Once effect lists get longer, it can be a good idea instead to encapsulate sets of effects
in a type synonym. This is achieved as follows, simply by defining a function which computes a type,
since types are first class in Idris:

EvalEff : Type -> Type
EvalEff t = Eff t [STDIO, EXCEPTION String, RND, STATE Env]

eval : Expr -> EvalEff Integer

4.4 Dependent Effects

In the programs we have seen so far, the available effects have remained constant. Sometimes, however,
an operation can change the available effects. The simplest example occurs when we have a state with
a dependent type—adding an element to a vector also changes its type, for example, since its length is
explicit in the type. In this section, we will see how the library supports this. Firstly, we will see how
states with dependent types can be implemented. Secondly, we will see how the effects can depend on
the result of an effectful operation. Finally, we will see how this can be used to implement a type-safe
and resource-safe protocol for file management.
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4.4.1 Dependent States

Suppose we have a function which reads input from the console, converts it to an integer, and adds it to
a list which is stored in a STATE. It might look something like the following:

readInt : Eff () [STATE (List Int), STDIO]
readInt = do let x = trim !getStr
put (cast x :: !get)

But what if, instead of a list of integers, we would like to store a Vect, maintaining the length in the
type?

readInt : Eff () [STATE (Vect n Int), STDIO]
readInt = do let x = trim !getStr
put (cast x :: !get)

This will not type check! Although the vector has length n on entry to readInt, it has length S n on
exit. The library allows us to express this as follows:

readInt : Eff () [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]
readInt = do let x = trim !getStr
putM (cast x :: !get)

The type Eff a xs xs' means that the operation begins with effects xs available, and ends with effects
xs’ available. We have used putM to update the state, where the M suffix indicates that the type is
being updated as well as the value. It has the following type:

putM : y -> Eff () [STATE x] [STATE yl

4.4.2 Result-dependent Effects

Often, whether a state is updated could depend on the success or otherwise of an operation. In our
readInt example, we might wish to update the vector only if the input is a valid integer (i.e. all digits).
As a first attempt, we could try the following, returning a Bool which indicates success:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
[STATE (Vect (S n) Int), STDIO]
readInt = do let x = trim !getStr
case all isDigit (unpack x) of
False => pure False
True => do putM (cast x :: !get)
pure True

Unfortunately, this will not type check because the vector does not get extended in both branches of the
case!

MutState.idr:18:19:When elaborating right hand side of Main.case
block in readInt:
Unifying n and S n would lead to infinite value

Clearly, the size of the resulting vector depends on whether or not the value read from the user was valid.
We can express this in the type:

readInt : Eff Bool [STATE (Vect n Int), STDIO]
(\ok => if ok then [STATE (Vect (S n) Int), STDIO]
else [STATE (Vect n Int), STDIO])

(8yNeéatezgeam)
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readInt = do let x = trim !getStr
case all isDigit (unpack x) of
False => pureM False
True => do putM (cast x :: !get)
pureM True

Using pureM rather than pure allows the output effects to be calculated from the value given. Its type
is:

pureM : (val : a) -> EffM m a (xs val) xs

When using readInt, we will have to check its return value in order to know what the new set of effects
is. For example, to read a set number of values into a vector, we could write the following:

readN : (n : Nat) ->
Eff () [STATE (Vect m Int), STDIO]
[STATE (Vect (n + m) Int), STDIO]
readN Z = pure ()
readN {m} (S k) = case !readInt of
True => rewrite plusSuccRightSucc k m in readN k
False => readN (S k)

The case analysis on the result of readInt means that we know in each branch whether reading the
integer succeeded, and therefore how many values still need to be read into the vector. What this means
in practice is that the type system has verified that a necessary dynamic check (i.e. whether reading a
value succeeded) has indeed been done.

HEf%E:  Only case will work here. We cannot use if/then/else because the then and else branches
must have the same type. The case construct, however, abstracts over the value being inspected in the
type of each branch.

4.4.3 File Management

A practical use for dependent effects is in specifying resource usage protocols and verifying that they are
executed correctly. For example, file management follows a resource usage protocol with the following
(informally specified) requirements:

o It is necessary to open a file for reading before reading it

e Opening may fail, so the programmer should check whether opening was successful
o A file which is open for reading must not be written to, and vice versa

e When finished, an open file handle should be closed

e When a file is closed, its handle should no longer be used

These requirements can be expressed formally in , by creating a FILE_I0 effect parameterised over a
file handle state, which is either empty, open for reading, or open for writing. The FILE_IO effect’ s
definition is given below. Note that this effect is mainly for illustrative purposes—typically we would
also like to support random access files and better reporting of error conditions.

module Effect.File

(87Néatezgeam)
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import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT
data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]
(\res => [FILE_IO (case res of
True => OpenFile m
False => ())1)
close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readlLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]
eof : Eff Bool [FILE_IO (OpenFile Read)]

Handler FileIO IO where { ... }

In particular, consider the type of open:

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]
(\res => [FILE_IO (case res of
True => OpenFile m
False => ())1)

This returns a Bool which indicates whether opening the file was successful. The resulting state depends
on whether the operation was successful; if so, we have a file handle open for the stated purpose, and if
not, we have no file handle. By case analysis on the result, we continue the protocol accordingly.

readFile : Eff (List String) [FILE_IO (OpenFile Read)]
readFile = readAcc [] where
readAcc : List String -> Eff (List String) [FILE_IO (OpenFile Read)]
readAcc acc = if (not !eof)
then readAcc (!readLine :: acc)
else pure (reverse acc)

Given a function readFile, above, which reads from an open file until reaching the end, we can write
a program which opens a file, reads it, then displays the contents and closes it, as follows, correctly
following the protocol:

dumpFile : String -> Eff () [FILE_IO (), STDIO]
dumpFile name = case !(open name Read) of
True => do putStrLn (show !readFile)
close
False => putStrLn ("Error!")

The type of dumpFile, with FILE_IO () in its effect list, indicates that any use of the file resource will
follow the protocol correctly (i.e. it both begins and ends with an empty resource). If we fail to follow
the protocol correctly (perhaps by forgetting to close the file, failing to check that open succeeded, or
opening the file for writing) then we will get a compile-time error. For example, changing open name
Read to open name Write yields a compile-time error of the following form:

FileTest.idr:16:18:When elaborating right hand side of Main.case
block in testFile:

(8yNeéatezgeam)
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Can't solve goal
SubList [(FILE_IO (OpenFile Read))]
[(FILE_IO (OpenFile Write)), STDIO]

In other words: when reading a file, we need a file which is open for reading, but the effect list contains
a FILE_IO effect carrying a file open for writing.

4.4.4 Pattern-matching bind

It might seem that having to test each potentially failing operation with a case clause could lead to ugly
code, with lots of nested case blocks. Many languages support exceptions to improve this, but unfor-
tunately exceptions may not allow completely clean resource management—for example, guaranteeing
that any open which did succeed has a corresponding close.

Idris supports pattern-matching bindings, such as the following;:

dumpFile : String -> Eff () [FILE_IO (), STDIO]

dumpFile name = do True <- open name Read
putStrLn (show !readFile)
close

This also has a problem: we are no longer dealing with the case where opening a file failed! The solution
is to extend the pattern-matching binding syntax to give brief clauses for failing matches. Here, for
example, we could write:

dumpFile : String -> Eff () [FILE_IO (), STDIO]

dumpFile name = do True <- open name Read | False => putStrLn "Error"
putStrLn (show !readFile)
close

This is exactly equivalent to the definition with the explicit case. In general, in a do-block, the syntax:

do pat <- val | <alternatives>
p

is desugared to

do x <- val
case x of
pat => p
<alternatives>

There can be several alternatives, separated by a vertical bar |. For example, there is a SYSTEM effect
which supports reading command line arguments, among other things (see Appendix |Effects Summary|
(éat 133)). To read command line arguments, we can use getArgs:

getArgs : Eff (List String) [SYSTEM]

A main program can read command line arguments as follows, where in the list which is returned, the
first element prog is the executable name and the second is an expected argument:

emain : Eff () [SYSTEM, STDIO]

emain = do [prog, argl <- getArgs
putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}
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Unfortunately, this will not fail gracefully if no argument is given, or if too many arguments are given.
We can use pattern matching bind alternatives to give a better (more informative) error:

emain : Eff () [SYSTEM, STDIO]
emain = do [prog, arg] <- getArgs | [] => putStrLn "Can't happen!"
| [progl => putStrLn "No arguments!"
| _ => putStrLn "Too many arguments!"
putStrLn $ "Argument is " ++ arg
{- ... rest of function ... -}

If getArgs does not return something of the form [prog, arg] the alternative which does match is
executed instead, and that value returned.

4.5 Creating New Effects

We have now seen several side-effecting operations provided by the Effects library, and examples of
their use in Section [Simple Effects| (éat 111). We have also seen how operations may modify the available
effects by changing state in Section [Dependent Effects| (éat 118). We have not, however, yet seen how
these operations are implemented. In this section, we describe how a selection of the available effects are
implemented, and show how new effectful operations may be provided.

4.5.1 State

Effects are described by algebraic data types, where the constructors describe the operations provided
when the effect is available. Stateful operations are described as follows:

data State : Effect where
Get : State a a (\x => a)
Put : b -> State () a (\x => b)

Effect itself is a type synonym, giving the required type for an effect signature:

Effect : Type

Effect = (result : Type) ->
(input_resource : Type) ->
(output_resource : result -> Type) -> Type

Each effect is associated with a resource. The second argument to an effect signature is the resource
type on input to an operation, and the third is a function which computes the resource type on output.
Here, it means:

e Get takes no arguments. It has a resource of type a, which is not updated, and running the Get
operation returns something of type a.

e Put takes a b as an argument. It has a resource of type a on input, which is updated to a resource
of type b. Running the Put operation returns the element of the unit type.

The effects library provides an overloaded function sig which can make effect signatures more concise,
particularly when the result has no effect on the resource type. For State, we can write:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

There are four versions of sig, depending on whether we are interested in the resource type, and whether
we are updating the resource. Idris will infer the appropriate version from usage.
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NoResourceEffect.sig : Effect -> Type -> Type

NoUpdateEffect.sig : Effect -> (ret : Type) ->
(resource : Type) -> Type
UpdateEffect.sig : Effect -> (ret : Type) ->

(resource_in : Type) ->

(resource_out : Type) -> Type
DepUpdateEffect.sig : Effect -> (ret : Type) —->

(resource_in : Type) ->

(resource_out : ret -> Type) -> Type

In order to convert State (of type Effect) into something usable in an effects list, of type EFFECT, we
write the following:

STATE : Type -> EFFECT
STATE t = MkEff t State

MKEff constructs an EFFECT by taking the resource type (here, the t which parameterises STATE) and
the effect signature (here, State). For reference, EFFECT is declared as follows:

data EFFECT : Type where
MkEff : Type -> Effect -> EFFECT

Recall that to run an effectful program in Eff, we use one of the run family of functions to run the
program in a particular computation context m. For each effect, therefore, we must explain how it is
executed in a particular computation context for run to work in that context. This is achieved with the
following interface:

interface Handler (e : Effect) (m : Type -> Type) where
handle : resource -> (eff : e t resource resource') ->
((x : t) -> resource' X ->m a) ->m a

We have already seen some implementation declarations in the effect summaries in Section [Stmple Effects
(éat 111). An implementation of Handler e m means that the effect declared with signature e can be
run in computation context m. The handle function takes:

o The resource on input (so, the current value of the state for State)
o The effectful operation (either Get or Put x for State)

e A continuation, which we conventionally call k, and should be passed the result value of the
operation, and an updated resource.

There are two reasons for taking a continuation here: firstly, this is neater because there are multiple
return values (a new resource and the result of the operation); secondly, and more importantly, the
continuation can be called zero or more times.

A Handler for State simply passes on the value of the state, in the case of Get, or passes on a new
state, in the case of Put. It is defined the same way for all computation contexts:

Handler State m where
handle st Get k
handle st (Put n) k

k st st
k On

This gives enough information for Get and Put to be used directly in Eff programs. It is tidy, however,
to define top level functions in Eff, as follows:

get : Eff x [STATE x]
get = call Get

(8yNeéatezgeam)
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put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

An implementation detail (aside): The call function converts an Effect to a function in Eff, given
a proof that the effect is available. This proof can be constructed automatically, since it is essentially an
index into a statically known list of effects:

call : {e : Effect} ->
(eff : e t a b) -> {auto prf : EffElem e a xs} ->
Eff t xs (\v => updateResTy v xs prf eff)

This is the reason for the Can’ t solve goal error when an effect is not available: the implicit proof

prf has not been solved automatically because the required effect is not in the list of effects xs.

Such details are not important for using the library, or even writing new effects, however.

Summary

The following listing summarises what is required to define the STATE effect:

data State : Effect where
Get : sig State a a
Put : b -> sig State () a b

STATE : Type -> EFFECT
STATE t = MkEff t State

Handler State m where
handle st Get k = k st st
handle st (Put n) k =k () n

get : Eff x [STATE x]
get = call Get

put : x -> Eff () [STATE x]
put val = call (Put val)

putM : y -> Eff () [STATE x] [STATE y]
putM val = call (Put val)

4.5.2 Console I/0

Then listing below gives the definition of the STDIO effect, including handlers for I0 and I0Except. We
omit the definition of the top level Eff functions, as this merely invoke the effects PutStr, GetStr, PutCh
and GetCh directly.

Note that in this case, the resource is the unit type in every case, since the handlers merely apply the
I0 equivalents of the effects directly.

data StdI0 : Effect where
PutStr : String -> sig StdI0 ()
GetStr : sig StdI0 String

(8 Néatezgcam)
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PutCh : Char -> sig StdI0 ()
GetCh : sig StdIO Char

Handler StdIO IO where
handle () (PutStr s) k

handle () GetStr k = do x <- getLine; k x O
handle () (PutCh c) k = do putChar c¢; k¥ O O
handle () GetCh k = do x <- getChar; k x ()

Handler StdIO (IOExcept a) where

handle () (PutStr s) k = do ioe_lift $ putStr s; k¥ OO ()
handle () GetStr k = do x <- ioe_lift $ getLine; k x O
do ioe_lift $ putChar c; k O O
handle () GetCh k = do x <- ioe_lift $ getChar; k x ()

handle () (PutCh c) k

STDIO : EFFECT
STDIO = MkEff () StdIO

4.5.3 Exceptions

do putStr s; ¥ O O

(czndyLéat)

The listing below gives the definition of the Exception effect, including two of its handlers for Maybe and
List. The only operation provided is Raise. The key point to note in the definitions of these handlers
is that the continuation k is not used. Running Raise therefore means that computation stops with an

error.

data Exception : Type -> Effect where
Raise : a —-> sig (Exception a) b

Handler (Exception a) Maybe where
handle _ (Raise e) k = Nothing

Handler (Exception a) List where
handle _ (Raise e) k = []

EXCEPTION : Type -> EFFECT
EXCEPTION t = MkEff () (Exception t)

4.5.4 Non-determinism

The following listing gives the definition of the Select effect for writing non-deterministic programs,
including a handler for List context which returns all possible successful values, and a handler for Maybe

context which returns the first successful value.

data Selection : Effect where

Select : List a -> sig Selection a

Handler Selection Maybe where

handle _ (Select xs) k = tryAll xs where

tryAll [] = Nothing

tryAll (x :: xs) = case k x () of
Nothing => tryAll xs
Just v => Just v

Handler Selection List where

handle r (Select xs) k = concatMap (\x => k x r) xs

(8yNeéatezgeam)
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SELECT : EFFECT
SELECT = MKEff () Selection

Here, the continuation is called multiple times in each handler, for each value in the list of possible
values. In the List handler, we accumulate all successful results, and in the Maybe handler we try the
first value in the list, and try later values only if that fails.

4.5.5 File Management

Result-dependent effects are no different from non-dependent effects in the way they are implemented.
The listing below illustrates this for the FILE_IO effect. The syntax for state transitions { x ==> {res}

)

x’  }, where the result state x° is computed from the result of the operation res, follows that for the
equivalent Eff programs.

data FileIO : Effect where
Open : (fname: String)
-> (m : Mode)
-> sig FileIO Bool () (\res => case res of
True => OpenFile m

False => ()
Close : sig FileIO () (OpenFile m)
ReadLine : sig FileIO String (OpenFile Read)
WriteLine : String -> sig FileIO () (OpenFile Write)
EOF : sig FileIO Bool  (OpenFile Read)

Handler FileIO IO where
handle () (Open fname m) k

do h <- openFile fname m
if !(validFile h)
then k True (FH h)
else k False ()

handle (FH h) Close k = do closeFile h
k(O O
handle (FH h) ReadLine k = do str <- fread h
k str (FH h)
handle (FH h) (WriteLine str) k = do fwrite h str
k O (FH h)
handle (FH h) EOF k = do e <- feof h
k e (FH h)

FILE_IO : Type -> EFFECT
FILE_IO t = MkEff t FileIO

Note that in the handler for Open, the types passed to the continuation k are different depending on
whether the result is True (opening succeeded) or False (opening failed). This uses validFile, defined
in the Prelude, to test whether a file handler refers to an open file or not.

4.6 Example: A “Mystery Word” Guessing Game

In this section, we will use the techniques and specific effects discussed in the tutorial so far to implement
a larger example, a simple text-based word-guessing game. In the game, the computer chooses a word,
which the player must guess letter by letter. After a limited number of wrong guesses, the player losesﬂ

1 Readers may recognise this game by the name “Hangman” .
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We will implement the game by following these steps:
1. Define the game state, in enough detail to express the rules

2. Define the rules of the game (i.e. what actions the player may take, and how these actions affect
the game state)

3. Implement the rules of the game (i.e. implement state updates for each action)
4. Implement a user interface which allows a player to direct actions

Step 2 may be achieved by defining an effect which depends on the state defined in step 1. Then step 3
involves implementing a Handler for this effect. Finally, step 4 involves implementing a program in Eff
using the newly defined effect (and any others required to implement the interface).

4.6.1 Step 1: Game State

First, we categorise the game states as running games (where there are a number of guesses available,
and a number of letters still to guess), or non-running games (i.e. games which have not been started,
or games which have been won or lost).

data GState = Running Nat Nat | NotRunning

Notice that at this stage, we say nothing about what it means to make a guess, what the word to be
guessed is, how to guess letters, or any other implementation detail. We are only interested in what is
necessary to describe the game rules.

We will, however, parameterise a concrete game state Mystery over this data:

data Mystery : GState -> Type

4.6.2 Step 2: Game Rules

We describe the game rules as a dependent effect, where each action has a precondition (i.e. what the
game state must be before carrying out the action) and a postcondition (i.e. how the action affects the
game state). Informally, these actions with the pre- and postconditions are:

Guess Guess a letter in the word.

e Precondition: The game must be running, and there must be both guesses still available, and
letters still to be guessed.

o Postcondition: If the guessed letter is in the word and not yet guessed, reduce the number of
letters, otherwise reduce the number of guesses.

Won Declare victory
e Precondition: The game must be running, and there must be no letters still to be guessed.
¢ Postcondition: The game is no longer running.
Lost Accept defeat
e Precondition: The game must be running, and there must be no guesses left.
e Postcondition: The game is no longer running.

NewWord Set a new word to be guessed
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e Precondition: The game must not be running.

o Postcondition: The game is running, with 6 guesses available (the choice of 6 is somewhat
arbitrary here) and the number of unique letters in the word still to be guessed.

Get Get a string representation of the game state. This is for display purposes; there are no pre- or
postconditions.

We can make these rules precise by declaring them more formally in an effect signature:

data MysteryRules : Effect where
Guess : (x : Char) ->
sig MysteryRules Bool
(Mystery (Running (S g) (S w)))
(\inword => if inword
then Mystery (Running (S g) w)
else Mystery (Running g (S w)))
Won : sig MysteryRules () (Mystery (Running g 0))
(Mystery NotRunning)
Lost : sig MysteryRules () (Mystery (Running 0 g))
(Mystery NotRunning)
NewWord : (w : String) ->
sig MysteryRules () (Mystery NotRunning) (Mystery (Running 6 (length (letters,
—w))))
Get : sig MysteryRules String (Mystery h)

This description says nothing about how the rules are implemented. In particular, it does not specify
how to tell whether a guessed letter was in a word, just that the result of Guess depends on it.

Nevertheless, we can still create an EFFECT from this, and use it in an Eff program. Implementing a
Handler for MysteryRules will then allow us to play the game.

MYSTERY : GState -> EFFECT
MYSTERY h = MkEff (Mystery h) MysteryRules

4.6.3 Step 3: Implement Rules

To implement the rules, we begin by giving a concrete definition of game state:

data Mystery : GState -> Type where

Init : Mystery NotRunning
GameWon : (word : String) -> Mystery NotRunning
GameLost : (word : String) -> Mystery NotRunning
MkG : (word : String) ->

(guesses : Nat) ->

(got : List Char) ->
(missing : Vect m Char) ->
Mystery (Running guesses m)

If a game is NotRunning, that is either because it has not yet started (Init) or because it is won or
lost (GameWon and GameLost, each of which carry the word so that showing the game state will reveal
the word to the player). Finally, MkG captures a running game’ s state, including the target word, the
letters successfully guessed, and the missing letters. Using a Vect for the missing letters is convenient
since its length is used in the type.

To initialise the state, we implement the following functions: letters, which returns a list of unique
letters in a String (ignoring spaces) and initState which sets up an initial state considered valid as a
postcondition for NewWord.
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letters : String -> List Char
initState : (x : String) -> Mystery (Running 6 (length (letters x)))

When checking if a guess is in the vector of missing letters, it is convenient to return a proof that the
guess is in the vector, using isElem below, rather than merely a Bool:

data IsElem : a -> Vect n a -> Type where
First : IsElem x (x :: xs8)
Later : IsElem x xs -> IsElem x (y :: xs)

isElem : DecEq a => (x : a) -> (xs : Vect n a) -> Maybe (IsElem x xs)

The reason for returning a proof is that we can use it to remove an element from the correct position in
a vector:

shrink : (xs : Vect (S n) a) -> IsElem x xs -> Vect n a

We leave the definitions of letters, init, isElem and shrink as exercises. Having implemented these,
the Handler implementation for MysteryRules is surprisingly straightforward:

Handler MysteryRules m where
handle (MkG w g got []) Won k
handle (MkG w Z got m) Lost k

k () (GameWon w)
k () (GamelLost w)

handle st Get k = k (show st) st
handle st (NewWord w) k = k () (initState w)

handle (MkG w (S g) got m) (Guess x) k =
case isElem x m of
Nothing => k False (MkG w _ got m)
(Just p) => k True (MkG w _ (x :: got) (shrink m p))

Each case simply involves directly updating the game state in a way which is consistent with the declared
rules. In particular, in Guess, if the handler claims that the guessed letter is in the word (by passing
True to k), there is no way to update the state in such a way that the number of missing letters or
number of guesses does not follow the rules.

4.6.4 Step 4: Implement Interface

Having described the rules, and implemented state transitions which follow those rules as an effect
handler, we can now write an interface for the game which uses the MYSTERY effect:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]

The type indicates that the game must start in a running state, with some guesses available, and
eventually reach a not-running state (i.e. won or lost). The only way to achieve this is by correctly
following the stated rules.

Note that the type of game makes no assumption that there are letters to be guessed in the given word
(i.e. it is w rather than S w). This is because we will be choosing a word at random from a vector of
String, and at no point have we made it explicit that those String are non-empty.

Finally, we need to initialise the game by picking a word at random from a list of candidates, setting it
as the target using NewWord, then running game:
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runGame : Eff () [MYSTERY NotRunning, RND, SYSTEM, STDIO]
runGame = do srand !time

let w = index ! (rndFin _) words

call $ NewWord w

game

putStrLn !(call Get)

We use the system time (time from the SYSTEM effect; see Appendix [Effects Summary| (éat 133)) to
initialise the random number generator, then pick a random Fin to index into a list of words. For
example, we could initialise a word list as follows:

words : 7wtype

words = with Vect ["idris","agda","haskell","miranda",
"java","javascript","fortran","basic",
"coffeescript","rust"]

wtype = proof search

Ef#: Rather than have to explicitly declare a type with the vector’ s length, it is convenient to give
a hole 7wtype and let Idris’ s proof search mechanism find the type. This is a limited form of type
inference, but very useful in practice.

A possible complete implementation of game is presented below:

game : Eff () [MYSTERY (Running (S g) w), STDIO]
[MYSTERY NotRunning, STDIO]
game {w=Z} = Won
game {w=S _}
= do putStrLn !Get
putStr "Enter guess: "
let guess = trim !getStr
case choose (not (guess == "")) of
(Left p) => processGuess (strHead' guess p)
(Right p) => do putStrLn "Invalid input!"
game
where
processGuess : Char -> Eff () [MYSTERY (Running (S g) (S w)), STDIO]
[MYSTERY NotRunning, STDIO]
processGuess {g} {w} c
= case !(Main.Guess c) of
True => do putStrLn "Good guess!"
case w of
Z => Won
(8 k) => game
False => do putStrLn "No, sorry"
case g of
Z => Lost
(8 k) => game

4.6.5 Discussion

Writing the rules separately as an effect, then an implementation which uses that effect, ensures that
the implementation must follow the rules. This has practical applications in more serious contexts;
MysteryRules for example can be though of as describing a protocol that a game player most follow, or
alternative a precisely-typed API.

In practice, we wouldn’ t really expect to write rules first then implement the game once the rules
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were complete. Indeed, I didn’ t do so when constructing this example! Rather, I wrote down a set
of likely rules making any assumptions ezplicit in the state transitions for MysteryRules. Then, when
implementing game at first, any incorrect assumption was caught as a type error. The following errors
were caught during development:

o Not realising that allowing NewWord to be an arbitrary string would mean that game would have
to deal with a zero-length word as a starting state.

e Forgetting to check whether a game was won before recursively calling processGuess, thus acci-
dentally continuing a finished game.

o Accidentally checking the number of missing letters, rather than the number of remaining guesses,
when checking if a game was lost.

These are, of course, simple errors, but were caught by the type checker before any testing of the game.

4.7 Further Reading

This tutorial has given an introduction to writing and reasoning about side-effecting programs in Idris,
using the Effects library. More details about the implementation of the library, such as how run works,
how handlers are invoked, etc, are given in a separate paperﬂ

Some libraries and programs which use Effects can be found in the following places:

o https://github.com/edwinb/SDL-idris — some bindings for the SDL media library, supporting
graphics in particular.

o https://github.com/edwinb/idris-demos — various demonstration programs, including several ex-
amples from this tutorial, and a “Space Invaders” game.

 https://github.com/SimonJF /IdrisNet2 — networking and socket libraries.

e https://github.com/edwinb/Protocols — a high level communication protocol description lan-
guage.

The inspiration for the Effects library was Bauer and Pretnar’ s Eff languageﬂ which describes a
language based on algebraic effects and handlers. Other recent languages and libraries have also been
built on this ideas, for exampld®| and?] The theoretical foundations are also well-studied sed?[*|["[F]

1 Edwin Brady. 2013. Programming and reasoning with algebraic effects and dependent types. SIGPLAN Not. 48, 9
(September 2013), 133-144. DOI=10.1145/2544174.2500581 https://dl.acm.org/citation.cfm?doid=2544174.2500581

2 Andrej Bauer, Matija Pretnar, Programming with algebraic effects and handlers, Journal of Logical and Algebraic
Methods in Programming, Volume 84, Issue 1, January 2015, Pages 108-123, ISSN 2352-2208, http://math.andrej.com/
wp-content /uploads/2012/03/eff.pdf

2 Ben Lippmeier. 2009. Witnessing Purity, Constancy and Mutability. In Proceedings of the 7th Asian Symposium on
Programming Languages and Systems (APLAS ‘09), Zhenjiang Hu (Ed.). Springer-Verlag, Berlin, Heidelberg, 95-110.
DOI=10.1007/978-3-642-10672-9 9 http://link.springer.com/chapter/10.1007%2F978-3-642-10672-9_ 9

4 Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. SIGPLAN Not. 48, 9 (September 2013),
145-158. DOI=10.1145/2544174.2500590 https://dl.acm.org/citation.cfm?doid=2544174.2500590

5 Martin Hyland, Gordon Plotkin, John Power, Combining effects: Sum and tensor, Theoretical Computer Science,
Volume 357, Issues 1-3, 25 July 2006, Pages 70-99, ISSN 0304-3975, (https://www.sciencedirect.com/science/article/pii/
S0304397506002659)

5 Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/ITmperative Synthesis (Semantics Structures in Computa-
tion, V. 2). Kluwer Academic Publishers, Norwell, MA, USA.

7 Plotkin, Gordon, and Matija Pretnar. “Handlers of algebraic effects.” Programming Languages and Systems.
Springer Berlin Heidelberg, 2009. 80-94.

8 Pretnar, Matija. “Logic and handling of algebraic effects.” (2010).
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4.8 Effects Summary

This appendix gives interfaces for the core effects provided by the library.

4.8.1 EXCEPTION

module Effect.Exception
import Effects
import System
import Control.IOExcept

EXCEPTION : Type -> EFFECT

raise : a -> Eff b [EXCEPTION a]

Handler (Exception a) Maybe where { ... }
Handler (Exception a) List where { ... }

Handler (Exception a) (Either a) where { ... }
Handler (Exception a) (IOExcept a) where { ... }
Show a => Handler (Exception a) IO where { ... }

4.8.2 FILE_IO

module Effect.File

import Effects
import Control.IOExcept

FILE_IO : Type -> EFFECT
data OpenFile : Mode -> Type

open : (fname : String)
-> (m : Mode)
-> Eff Bool [FILE_IO ()]
(\res => [FILE_IO (case res of
True => OpenFile m
False => ())1)
close : Eff () [FILE_IO (OpenFile m)] [FILE_IO ()]

readLine : Eff String [FILE_IO (OpenFile Read)]
writeLine : String -> Eff () [FILE_IO (OpenFile Write)]

eof : Eff Bool [FILE_IO (OpenFile Read)]
Handler FileIO IO where { ... }
4.8.3 RND

module Effect.Random

import Effects
import Data.Vect
import Data.Fin

(8Néatezgeam)
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RND : EFFECT

srand : Integer -> Eff m () [RND]

rndInt : Integer -> Integer -> Eff m Integer [RND]
rndFin : (k : Nat) -> Eff m (Fin (S k)) [RND]

Handler Random m where { ... }

4.8.4 SELECT

module Effect.Select

import Effects

SELECT : EFFECT

select : List a -> Eff m a [SELECT]

Handler Selection Maybe where { ... }
Handler Selection List where { ... }

4.8.5 STATE

module Effect.State

import Effects

STATE : Type -> EFFECT

get : Eff m x [STATE x]

put x> Eff m () [STATE x]

putM :y —> Eff m () [STATE x] [STATE y]
m

update : (x -> x) -> Eff m () [STATE x]

Handler State m where { ... }

48.6 STDIO

module Effect.StdIO

import Effects
import Control.IOExcept

STDIO : EFFECT
putChar : Handler StdI0 m => Char -> Eff m () [STDIO]
putStr  : Handler StdI0 m => String -> Eff m () [STDIO]

putStrln : Handler StdI0 m => String -> Eff m () [STDIO]

getStr  : Handler StdI0 m => Eff m String [STDIO]
getChar : Handler StdI0 m => Eff m Char [STDIO]

(czndyLéat)

(87 Néatezggan)
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(¢znéyLéat)
Handler StdIO IO where { ... }
Handler StdI0 (IOExcept a) where { ... }

4.8.7 SYSTEM

module Effect.System

import Effects
import System
import Control.IOExcept

SYSTEM : EFFECT
getArgs : Handler System e => Eff e (List String) [SYSTEM]

time : Handler System e => Eff e Int [SYSTEM]
getEnv : Handler System e => String -> Eff e (Maybe String) [SYSTEM]

Handler System IO where { ... }
Handler System (IOExcept a) where { ... }
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CHAPTER b

Theorem Proving

A tutorial on theorem proving in Idris.

#f#: The documentation for Idris has been published under the Creative Commons CCO License. As
such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CCO can be found online at: |http://creativecommons.org/
publicdomain /zero/1.0/

5.1 Running example: Addition of Natural Numbers

Throughout this tutorial, we will be working with the following function, defined in the Idris prelude,
which defines addition on natural numbers:

plus : Nat -> Nat -> Nat
plus Z m=nm
plus (S k) m = S (plus k m)

It is defined by the above equations, meaning that we have for free the properties that adding m to zero
always results in m, and that adding m to any non-zero number S k always results in S (plus k m). We
can see this by evaluation at the Idris REPL (i.e. the prompt, the read-eval-print loop):

Idris> \m => plus Z m
\m =>m : Nat -> Nat

Idris> \k,m => plus (S k) m
\k => \m => S (plus k m) : Nat -> Nat -> Nat

Note that unlike many other language REPLs, the Idris REPL performs evaluation on open terms,
meaning that it can reduce terms which appear inside lambda bindings, like those above. Therefore, we
can introduce unknowns k and m as lambda bindings and see how plus reduces.
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The plus function has a number of other useful properties, for example:
o It is commutative, that is for all Nat inputs n and m, we know that plus n m = plus m n.

e It is associative, that is for all Nat inputs n, m and p, we know that plus n (plus m p) = plus
(plus m n) p.

We can use these properties in an Idris program, but in order to do so we must prove them.

5.1.1 Equality Proofs

Idris has a built-in propositional equality type, conceptually defined as follows:

data (=) : a -> b -> Type where
Refl : x = x

Note that this must be built-in, rather than defined in the library, because = is a reserved operator —
you cannot define this directly in your own code.

It is propositional equality, where the type states that any two values in different types a and b may be
proposed to be equal. There is only one way to prove equality, however, which is by reflexivity (Refl).

We have a type for propositional equality here, and correspondingly a program inhabiting an instance
of this type can be seen as a proof of the corresponding propositiorﬂ So, trivially, we can prove that 4
equals 4:

four_eq : 4 = 4
four_eq = Refl

However, trying to prove that 4 = 5 results in failure:

four_eq_five : 4 = 5
four_eq_five = Refl

The type 4 = 5 is a perfectly valid type, but is uninhabited, so when trying to type check this definition,
Idris gives the following error:

When elaborating right hand side of four_eq_five:
Type mismatch between

x = x (Type of Refl)
and

4 = 5 (Expected type)

Type checking equality proofs

An important step in type checking Idris programs is unification, which attempts to resolve implicit
arguments such as the implicit argument x in Refl. As far as our understanding of type checking proofs
is concerned, it suffices to know that unifying two terms involves reducing both to normal form then
trying to find an assignment to implicit arguments which will make those normal forms equal.

When type checking Refl, Idris requires that the type is of the form x = x, as we see from the type
of Refl. In the case of four_eq_five, Idris will try to unify the expected type 4 = 5 with the type of
Refl, x = x, notice that a solution requires that x be both 4 and 5, and therefore fail.

Since type checking involves reduction to normal form, we can write the following equalities directly:

1 This is known as the Curry-Howard correspondence.
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twoplustwo_eq_four : 2 + 2 = 4
twoplustwo_eq_four = Refl

plus_reduces_Z : (m : Nat) -> plus Zm =m
plus_reduces_Z m = Refl

plus_reduces_Sk : (k, m : Nat) -> plus (S k) m = S (plus k m)
plus_reduces_Sk k m = Refl

5.1.2 Heterogeneous Equality

Equality in Idris is heterogeneous, meaning that we can even propose equalities between values in different
types:

idris_not_php : 2 = "2"
Obviously, in Idris the type 2 = "2" is uninhabited, and one might wonder why it is useful to be able

to propose equalities between values in different types. However, with dependent types, such equalities
can arise naturally. For example, if two vectors are equal, their lengths must be equal:

vect_eq_length : (xs : Vect n a) -> (ys : Vect m a) —>

(xs =ys) >n=nm

In the above declaration, xs and ys have different types because their lengths are different, but we
would still like to draw a conclusion about the lengths if they happen to be equal. We can define
vect_eq_length as follows:

vect_eq_length xs xs Refl = Refl

By matching on Refl for the third argument, we know that the only valid value for ys is xs, because
they must be equal, and therefore their types must be equal, so the lengths must be equal.

Alternatively, we can put an underscore for the second xs, since there is only one value which will type
check:

vect_eq_length xs _ Refl = Refl

5.1.3 Properties of plus

Using the (=) type, we can now state the properties of plus given above as Idris type declarations:

plus_commutes : (n, m : Nat) -> plus nm = plus m n
plus_assoc : (n, m, p : Nat) -> plus n (plus m p) = plus (plus n m) p

Both of these properties (and many others) are proved for natural number addition in the Idris stan-
dard library, using (+) from the Num interface rather than using plus directly. They have the names
plusCommutative and plusAssociative respectively.

In the remainder of this tutorial, we will explore several different ways of proving plus_commutes (or,
to put it another way, writing the function.) We will also discuss how to use such equality proofs, and
see where the need for them arises in practice.
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5.2 Inductive Proofs

Before embarking on proving plus_commutes in Idris itself, let us consider the overall structure of a
proof of some property of natural numbers. Recall that they are defined recursively, as follows:

data Nat : Type where
Z : Nat
S : Nat -> Nat

A total function over natural numbers must both terminate, and cover all possible inputs. Idris checks
functions for totality by checking that all inputs are covered, and that all recursive calls are on structurally
smaller values (so recursion will always reach a base case). Recalling plus:

plus : Nat -> Nat -> Nat
plus Z m=m
plus (S k) m = S (plus k m)

This is total because it covers all possible inputs (the first argument can only be Z or S k for some k,
and the second argument m covers all possible Nat) and in the recursive call, k is structurally smaller
than S k so the first argument will always reach the base case Z in any sequence of recursive calls.

In some sense, this resembles a mathematical proof by induction (and this is no coincidence!). For some
property P of a natural number x, we can show that P holds for all x if:

o P holds for zero (the base case).
o Assuming that P holds for k, we can show P also holds for S k (the inductive step).

In plus, the property we are trying to show is somewhat trivial (for all natural numbers x, there is
a Nat which need not have any relation to x). However, it still takes the form of a base case and an
inductive step. In the base case, we show that there is a Nat arising from plus n m when n = Z, and
in the inductive step we show that there is a Nat arising when n = S k and we know we can get a Nat
inductively from plus k m. We could even write a function capturing all such inductive definitions:

nat_induction : (P : Nat -> Type) -> -- Property to show
P z) -> -- Base case
((k : Nat) -> P k => P (S k)) -> -- Inductive step
(x : Nat) -> -- Show for all z
P x

nat_induction P p_Z p_S Z = p_Z

nat_induction P p_Z p_S (S k) = p_S k (nat_induction P p_Z p_S k)

Using nat_induction, we can implement an equivalent inductive version of plus:

plus_ind : Nat -> Nat -> Nat
plus_ind n m
= nat_induction (\x => Nat)
m -- Base case, plus_ind Z m
(\k, k_rec => S k_rec) -- Inductive step plus_ind (S k) m
-— where k_rec = plus_ind k m
n

To prove that plus n m = plus m n for all natural numbers n and m, we can also use induction. Either
we can fix m and perform induction on n, or vice versa. We can sketch an outline of a proof; performing
induction on n, we have:

e Property Pis \x => plus x m = plus m x.

e Show that P holds in the base case and inductive step:
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— Base case: P Z, i.e.
plus Z m = plus m Z, which reduces to
m = plus m Z due to the definition of plus.

— Inductive step: Inductively, we know that P k holds for a specific, fixed k, i.e.
plus k m = plus m k (the induction hypothesis). Given this, show P (S k), i.e.
plus (S k) m
S (plus k m)
S (plus m k)

plus m (S k), which reduces to

plus m (S k). From the induction hypothesis, we can rewrite this to
plus m (S k).

To complete the proof we therefore need to show that m = plus m Z for all natural numbers m, and that
S (plus m k) = plus m (S k) for all natural numbers m and k. Each of these can also be proved by
induction, this time on m.

We are now ready to embark on a proof of commutativity of plus formally in Idris.

5.3 Pattern Matching Proofs

In this section, we will provide a proof of plus_commutes directly, by writing a pattern matching def-
inition. We will use interactive editing features extensively, since it is significantly easier to produce a
proof when the machine can give the types of intermediate values and construct components of the proof
itself. The commands we will use are summarised below. Where we refer to commands directly, we will
use the Vim version, but these commands have a direct mapping to Emacs commands.

Command Vim Emacs Explanation
binding | binding

Check type \t C-c C-t Show type of identifier or hole under the cursor.

Proof search \o C-c C-a Attempt to solve hole under the cursor by applying simple
proof search.

Make new | \d C-c C-s Add a template definition for the type defined under the

definition Cursor.

Make lemma | \1 C-c C-e Add a top level function with a type which solves the hole
under the cursor.

Split cases \c C-c C-c Create new constructor patterns for each possible case of the
variable under the cursor.

5.3.1 Creating a Definition

To begin, create a file pluscomm.idr containing the following type declaration:

plus_commutes : (n : Nat) => (m : Nat) ->n +m=m+ n

To create a template definition for the proof, press \d (or the equivalent in your editor of choice) on the
line with the type declaration. You should see:

plus_commutes : (n : Nat) -> (m : Nat) ->n +m=m+n
plus_commutes n m = ?plus_commutes_rhs

To prove this by induction on n, as we sketched in Section [Inductive Proofs| (éat 139), we begin with a
case split on n (press \c with the cursor over the n in the definition.) You should see:
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plus_commutes : (n : Nat) -> (m : Nat) ->n +m=m + n
plus_commutes Z m = 7plus_commutes_rhs_1
plus_commutes (S k) m = ?plus_commutes_rhs_2

If we inspect the types of the newly created holes, plus_commutes_rhs_1 and plus_commutes_rhs_2,
we see that the type of each reflects that n has been refined to Z and S k in each respective case. Pressing
\t over plus_commutes_rhs_1 shows:

Note that Z renders as 0 because the pretty printer renders natural numbers as integer literals for
readability. Similarly, for plus_commutes_rhs_2:

k : Nat
m : Nat

plus_commutes_rhs_2 : S (plus k m) = plus m (S k)

It is a good idea to give these slightly more meaningful names:
plus_commutes : (n : Nat) -> (m : Nat) ->n +m=m + n

plus_commutes Z m = 7plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

5.3.2 Base Case

We can create a separate lemma for the base case interactively, by pressing \1 with the cursor over
plus_commutes_Z. This yields:

plus_commutes_Z : m = plus m O

plus_commutes : (n : Nat) -> (m : Nat) > n +m=m+ n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

That is, the hole has been filled with a call to a top level function plus_commutes_Z. The argument m
has been made implicit because it can be inferred from context when it is applied.

Unfortunately, we cannot prove this lemma directly, since plus is defined by matching on its first
argument, and here plus m 0 has a specific value for its second argument (in fact, the left hand side of
the equality has been reduced from plus 0 m.) Again, we can prove this by induction, this time on m.

First, create a template definition with \d:
plus_commutes_Z : m = plus m O

plus_commutes_Z = 7plus_commutes_Z_rhs

Since we are going to write this by induction on m, which is implicit, we will need to bring m into scope
manually:

plus_commutes_Z : m = plus m O
plus_commutes_Z {m} = ?plus_commutes_Z_rhs

Now, case split on m with \c:
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plus_commutes_Z : m = plus m O
plus_commutes_Z {m = Z} = 7plus_commutes_Z_rhs_1
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2

Checking the type of plus_commutes_Z_rhs_1 shows the following, which is easily proved by reflection:

For such trivial proofs, we can let write the proof automatically by pressing \o with the cursor over
plus_commutes_Z_rhs_1. This yields:

plus_commutes_Z : m = plus m O
plus_commutes_Z {m = Z} = Refl
plus_commutes_Z {m = (S k)} = ?plus_commutes_Z_rhs_2

For plus_commutes_Z_rhs_2, we are not so lucky:

plus_commutes_Z_rhs_2 : S k = S (plus k 0)

Inductively, we should know that k = plus k 0, and we can get access to this inductive hypothesis by
making a recursive call on k, as follows:

plus_commutes_Z : m = plus m O

plus_commutes_Z {m = Z} = Refl

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
?plus_commutes_Z_rhs_2

For plus_commutes_Z_rhs_2, we now see:

k : Nat
rec : k = plus k (fromInteger 0)

plus_commutes_Z_rhs_2 : S k = S (plus k 0)

Again, the fromInteger O is merely due to Nat having an implementation of the Num interface. So we
know that k = plus k 0, but how do we use this to update the goal to S k = S k?

To achieve this, Idris provides a replace function as part of the prelude:

*pluscomm> :t replace
replace : (x =y) >Px >Py

Given a proof that x = y, and a property P which holds for x, we can get a proof of the same property
for y, because we know x and y must be the same. In practice, this function can be a little tricky to use
because in general the implicit argument P can be hard to infer by unification, so Idris provides a high
level syntax which calculates the property and applies replace:

rewrite prf in expr
If we have prf : x = y, and the required type for expr is some property of x, the rewrite ... in

syntax will search for x in the required type of expr and replace it with y. Concretely, in our example,
we can say:

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
rewrite rec in ?plus_commutes_Z_rhs_2
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Checking the type of plus_commutes_Z_rhs_2 now gives:

k : Nat
rec : k = plus k (fromInteger 0)
_rewrite_rule : plus k 0 = k

plus_commutes_Z_rhs_2 : S (plus k 0) = S (plus k 0)
Using the rewrite rule rec (which we can see in the context here as _rewrite_ruleﬂ the goal type has

been updated with k replaced by plus k 0.

Alternatively, we could have applied the rewrite in the other direction using the sym function:

*pluscomm> :t sym
sym : (1 =1r) ->r

]
=

plus_commutes_Z {m = (S k)} = let rec = plus_commutes_Z {m=k} in
rewrite sym rec in 7plus_commutes_Z_rhs_2

In this case, inspecting the type of the hole gives:

k : Nat
rec : k = plus k (fromInteger 0)
_rewrite_rule : k = plus k O

Either way, we can use proof search (\o) to complete the proof, giving:

plus_commutes_Z : m = plus m O

plus_commutes_Z {m = Z} = Refl

plus_commutes_Z {m (S k)} = let rec = plus_commutes_Z {m=k} in
rewrite rec in Refl

The base case is now complete.

5.3.3 Inductive Step

Our main theorem, plus_commutes should currently be in the following state:

plus_commutes : (n : Nat) => (m : Nat) ->n +m=m+ n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = ?plus_commutes_S

Looking again at the type of plus_commutes_S, we have:

k : Nat
m : Nat

plus_commutes_S : S (plus k m) = plus m (S k)

Conveniently, by induction we can immediately tell that plus k m = plus m k, so let us rewrite directly
by making a recursive call to plus_commutes. We add this directly, by hand, as follows:

1 Note that the left and right hand sides of the equality have been swapped, because replace takes a proof of x=y and
the property for x, not y.
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plus_commutes : (n : Nat) -> (m : Nat) ->n +m=m + n
plus_commutes Z m = plus_commutes_Z
plus_commutes (S k) m = rewrite plus_commutes k m in ?plus_commutes_S

Checking the type of plus_commutes_S now gives:

k : Nat
m : Nat
_rewrite_rule : plus m k = plus k m

plus_commutes_S : S (plus m k) = plus m (S k)

The good news is that m and k now appear in the correct order. However, we still have to show that
the successor symbol S can be moved to the front in the right hand side of this equality. This remaining
lemma takes a similar form to the plus_commutes_Z; we begin by making a new top level lemma with
\1. This gives:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)

Unlike the previous case, k and m are not made implicit because we cannot in general infer arguments
to a function from its result. Again, we make a template definition with \d:

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)

plus_commutes_S k m = ?plus_commutes_S_rhs

Again, this is defined by induction over m, since plus is defined by matching on its first argument. The
complete definition is:

total

plus_commutes_S : (k : Nat) -> (m : Nat) -> S (plus m k) = plus m (S k)
plus_commutes_S k Z = Refl

plus_commutes_S k (S j) = rewrite plus_commutes_S k j in Refl

All holes have now been solved.

The total annotation means that we require the final function to pass the totality checker; i.e. it will
terminate on all possible well-typed inputs. This is important for proofs, since it provides a guarantee
that the proof is valid in all cases, not just those for which it happens to be well-defined.

Now that plus_commutes has a total annotation, we have completed the proof of commutativity of
addition on natural numbers.

5.4 DEPRECATED: Interactive Theorem Proving

&L The interactive theorem-proving interface documented here has been deprecated in favor of
[Elaborator Reflection| (éat 199).

Idris also supports interactive theorem proving via tactics. This is generally not recommended to be
used directly, but rather used as a mechanism for building proof automation which is beyond the scope
of this tutorial. In this section, we briefly discus tactics.

One way to write proofs interactively is to write the general structure of the proof, and use the interactive
mode to complete the details. Consider the following definition, proved in [€ EEUERH| (éat 41):
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plusReduces : (n:Nat) -> plus Zn =n

We’ 1l be constructing the proof by induction, so we write the cases for Z and S, with a recursive call in
the S case giving the inductive hypothesis, and insert holes for the rest of the definition:

plusReducesZ' : (n:Nat) -> n = plus n Z

plusReducesZ' Z = ?plusredZ_Z

plusReducesZ' (S k) = let ih = plusReducesZ' k in
?plusredZ_S

On running , two global names are created, plusredZ_Z and plusredZ_S, with no definition. We can
use the :m command at the prompt to find out which holes are still to be solved (or, more precisely,
which functions exist but have no definitions), then the :t command to see their types:

*theorems> :m
Global holes:
[plusredZ_S,plusredZ_Z]

*theorems> :t plusredZ_Z
plusredZ_Z : Z = plus Z Z

*theorems> :t plusredZ_S
plusredZ_S : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

The :p command enters interactive proof mode, which can be used to complete the missing definitions.

*theorems> :p plusredZ_Z

{hole0} : Z = plus Z Z

This gives us a list of premises (above the line; there are none here) and the current goal (below the line;
named {holeO} here). At the prompt we can enter tactics to direct the construction of the proof. In
this case, we can normalise the goal with the compute tactic:

-plusredZ_Z> compute

Now we have to prove that Z equals Z, which is easy to prove by Refl. To apply a function, such as
Refl, we use refine which introduces subgoals for each of the function’ s explicit arguments (Refl has
none):

-plusredZ_Z> refine Refl
plusredZ_Z: no more goals

Here, we could also have used the trivial tactic, which tries to refine by Refl, and if that fails, tries
to refine by each name in the local context. When a proof is complete, we use the ged tactic to add the
proof to the global context, and remove the hole from the unsolved holes list. This also outputs a trace
of the proof:

-plusredZ_Z> ged
plusredZ_Z = proof
compute
refine Refl
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*theorems> :m
Global holes:
[plusredZ_S]

The :addproof command, at the interactive prompt, will add the proof to the source file (effectively in
an appendix). Let us now prove the other required lemma, plusredZ_S:

*theorems> :p plusredZ_S

—————————————————————————————————— (plusredZ_S) —--------
{hole0} : (k : Nat) -> (k = plus k Z) -> S k = plus (S k) Z

In this case, the goal is a function type, using k (the argument accessible by pattern matching) and ih
— the local variable containing the result of the recursive call. We can introduce these as premises using
the intro tactic twice (or intros, which introduces all arguments as premises). This gives:

{hole2} : S k = plus (S k) Z

Since plus is defined by recursion on its first argument, the term plus (S k) Z in the goal can be
simplified, so we use compute.

{hole2} : S k = S (plus k Z)

We know, from the type of ih, that k = plus k Z, so we would like to use this knowledge to replace
plus k Z in the goal with k. We can achieve this with the rewrite tactic:

-plusredZ_S> rewrite ih

-plusredZ_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite the goal using that
proof. Here, it results in an equality which is trivially provable:

-plusredZ_S> trivial
plusredZ_S: no more goals
-plusredZ_S> qged
plusredZ_S = proof {

intros;

rewrite ih;

trivial;

Again, we can add this proof to the end of our source file using the :addproof command at the interactive
prompt.
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CHAPTER 6

Language Reference

This is the reference guide for the Idris Language. It documents the language specification and internals.
This will tell you how Idris works, for using it you should read the Idris Tutorial.

#f#: The documentation for Idris has been published under the Creative Commons CCO License. As
such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CCO can be found online at: |http://creativecommons.org/
publicdomain /zero/1.0/

6.1 Code Generation Targets

Idris has been designed such that the compiler can generate code for different backends upon request.
By default Idris generates a C backend when generating an executable. Included within the standard
Idris installation are backends for Javascript and Node.js.

However, there are third-party code generators out there. Below we describe some of these backends and
how you can use them when compiling your Idris code. If you want to write your own codegen for your
language there is a stub project on GitHub| that can help point you in the right direction.

6.1.1 Official Backends
C Language
Javascript

To generate code that is tailored for running in the browser issue the following command:
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$ idris --codegen javascript hello.idr -o hello.js
Idris can produce very big chunks of JavaScript code (hello world weighs in at 1500 lines). However, the
generated code can be minified using the |closure-compiler| from Google.

java -jar compiler.jar --compilation_level ADVANCED_OPTIMIZATIONS --js hello.js

Node.js
Generating code for NodelJS is slightly different. Idris outputs a JavaScript file that can be directly
executed via node.

$ idris --codegen node hello.idr -o hello
$ ./hello
Hello world

6.1.2 Third Party

Ef#: These are third-party code generations and may have bit-rotted or do not work with current
versions of Idris. Please speak to the project’ s maintainors if there are any problems.

CIL (.NET, Mono, Unity)

idris --codegen cil Main.idr -o HelloWorld.exe \
&& mono HelloWorld.exe

The resulting assemblies can also be used with .NET or Unity.
Requires [idris-cill
Erlang

Available online

Java

Available online

idris hello.idr --codegen java -o hello.jar

Note: The resulting .jar is automatically prefixed by a header including an .sh script to allow executing
it directly.

JVM

Available online
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LLVM

Available online

Malfunction

Available online

Ocaml

Available online

PHP

Available online

Python

Available online

Ruby

Available online

WS

Available online

WebAssembly

Available online

6.2 Documenting ldris Code

Idris documentation comes in two major forms: comments, which exist for a reader’ s edification and
are ignored by the compiler, and inline API documentation, which the compiler parses and stores for
future reference. To consult the documentation for a declaration £, write :doc f at the REPL or use
the appropriate command in your editor (C-c¢ C-d in Emacs, <LocalLeader>h in Vim).

6.2.1 Comments

Use comments to explain why code is written the way that it is. Idris’ s comment syntax is the same as
that of Haskell: lines beginning with -- are comments, and regions bracketed by {- and -} are comments
even if they extend across multiple lines. These can be used to comment out lines of code or provide
simple documentation for the readers of Idris code.
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6.2.2 Inline Documentation

Idris also supports a comprehensive and rich inline syntax for Idris code to be generated. This syntax
also allows for named parameters and variables within type signatures to be individually annotated using
a syntax similar to Javadoc parameter annotations.

Documentation always comes before the declaration being documented. Inline documentation applies to
either top-level declarations or to constructors. Documentation for specific arguments to constructors,
type constructors, or functions can be associated with these arguments using their names.

The inline documentation for a declaration is an unbroken string of lines, each of which begins with || |
(three pipe symbols). The first paragraph of the documentation is taken to be an overview, and in some
contexts, only this overview will be shown. After the documentation for the declaration as a whole, it
is possible to associate documentation with specific named parameters, which can either be explicitly
name or the results of converting free variables to implicit parameters. Annotations are the same as with
Javadoc annotations, that is for the named parameter (n : T), the corresponding annotation is ||| @
n Some description that is placed before the declaration.

Documentation is written in Markdown, though not all contexts will display all possible formatting (for
example, images are not displayed when viewing documentation in the REPL, and only some terminals
render italics correctly). A comprehensive set of examples is given below.

||| Modules can also be documented.
module Docs

/1l Add some numbers.

11

/1] Addition is really great. This paragraph is not part of the overview.

/1] Still the same paragraph.

11

/1] You can even provide examples which are inlined in the documentation:

[l " idris example

[l add 4 5

-

11

[l Lists are also nifty:

/Il * Really nifty!

Il * Yep!

[I] * The name “add’ %s a **bold** choice

/Il @n is the recursive param
@

111 m ts not

add : (n, m : Nat) -> Nat
add Z m=nm

add (S n) m =S (add n m)

/1] Append some vectors

/1] @ a the contents of the wectors

/Il @ zs the first vector (recursive param)

/1] @ ys the second vector (not analysed)

appendV : (xs : Vect n a) -> (ys : Vect m a) -> Vect (add n m) a
appendV [] ys = ys

appendV (x::xs) ys = x :: appendV xs ys

/|| Here's a simple datatype
data Ty =

Il Unit

UNIT |

I'l] Functions

ARR Ty Ty

(8yNeéatezgeam)
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(¢znéyLéat)
[l Points to a place in a typing context
data Elem : Vect n Ty -> Ty -> Type where
Here : {ts : Vect n Ty} -> Elem (t::ts) t
There : {ts : Vect n Ty} -> Elem ts t -> Elem (t'::ts) t

/1] A more interesting datatype

[l @ n the number of free wvartables

[l @ ctzt a typing context for the free wariables

/Il @ ty the type of the term

data Term : (ctxt : Vect n Ty) -> (ty : Ty) -> Type where

[I] The constructor of the unit type

/1] More comment

[l @ ctzt the typing context

UnitCon : {ctxt : Vect n Ty} -> Term ctxt UNIT

/1] Function application

[l @ f the function to apply

/Il @z the argument

App : {ctxt : Vect n Ty} -> (£ : Term ctxt (ARR tl t2)) -> (x : Term ctxt tl1l) -> Term ctxt t2

I1] Lambda
/1] @ body the function body
Lam : {ctxt : Vect n Ty} -> (body : Term (tl::ctxt) t2) -> Term ctxt (ARR tl t2)

111l Variables
/Il @ % de Bruijn index
Var : {ctxt : Vect n Ty} -> (i : Elem ctxt t) -> Term ctxt t

/Il A computation that may someday finish
codata Partial : Type -> Type where

/Il A finished computation
/1] @ value the result
Now : (value : a) —-> Partial a

/1] A not-yet-finished computation
[l @ rest the remaining work
Later : (rest : Partial a) -> Partial a

/1] We can document records, including their fields and constructors
record Yummy where

[l Make a yummy

constructor MkYummy

[ll What to eat

food : String

6.3 Packages

Idris includes a simple system for building packages from a package description file. These files can be
used with the Idris compiler to manage the development process of your Idris programmes and packages.

6.3.1 Package Descriptions

A package description includes the following:
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A header, consisting of the keyword package followed by the package name. Package names can
be any valid Idris identifier. The iPKG format also takes a quoted version that accepts any valid
filename.

Fields describing package contents, <field> = <value>

At least one field must be the modules field, where the value is a comma separated list of modules. For
example, a library test which has two modules foo.idr and bar.idr as source files would be written as
follows:

package foo

modules = foo, bar

Other examples of package files can be found in the 1ibs directory of the main Idris repository, and in
third-party libraries.

Metadata

From Idris v0.12 the {PKG format supports additional metadata associated with the package. The
added fields are:

brief = "<text>", a string literal containing a brief description of the package.
version = <text>, a version string to associate with the package.

readme = <file>, location of the README file.

license = <text>, a string description of the licensing information.

author = <text>, the author information.

maintainer = <text>, Maintainer information.

homepage = <url>, the website associated with the package.

sourceloc = <url>, the location of the DVCS where the source can be found.

bugtracker = <url>, the location of the project’ s bug tracker.

Common Fields

Other common fields which may be present in an ipkg file are:

sourcedir = <dir>, which takes the directory (relative to the current directory) which contains
the source. Default is the current directory.

executable = <output>, which takes the name of the executable file to generate. Executable
names can be any valid Idris identifier. the iPKG format also takes a quoted version that accepts
any valid filename.

main = <module>, which takes the name of the main module, and must be present if the executable
field is present.

opts = "<idris options>", which allows options to be passed to Idris.

pkgs = <pkg name> (',' <pkg name>)+, a comma separated list of package names that the Idris
package requires.
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Binding to C

In more advanced cases, particularly to support creating bindings to external C libraries, the following
options are available:

makefile = <file>, which specifies a Makefile, to be built before the Idris modules, for ex-
ample to support linking with a C library. When building, Idris sets the environment variables
IDRIS_INCLUDES (with C include flags) and IDRIS_LDFLAGS (with C linking flags) so they can be
used from inside the Makefile.

libs = <1libs>, which takes a comma separated list of libraries which must be present for the
package to be usable.

objs = <objs>, which takes a comma separated list of additional files to be installed (object files,
headers), perhaps generated by the Makefile.

Testing

For testing Idris packages there is a rudimentary testing harness, run in the I0 context. The iPKG file is
used to specify the functions used for testing. The following option is available:

tests = <test functions>, which takes the qualified names of all test functions to be run.

HZE: The modules containing the test functions must also be added to the list of modules.

Comments

Package files support comments using the standard Idris singleline —- and multiline {- -} format.

6.3.2 Using Package files

Given an Idris package file test.ipkg it can be used with the Idris compiler as follows:

idris --build test.ipkg will build all modules in the package

idris --install test.ipkg will install the package, making it accessible by other Idris libraries
and programs.

idris --clean test.ipkg will delete all intermediate code and executable files generated when
building.

idris --mkdoc test.ipkg will build HTML documentation for your package in the folder
test_doc in your project’ s root directory.

idris --installdoc test.ipkg will install the packages documentation into Idris’ central doc-
umentation folder located at idris --docdir.

idris --checkpkg test.ipkg will type check all modules in the package only. This differs from
build that type checks and generates code.

idris --testpkg test.ipkg will compile and run any embedded tests you have specified in the
tests parameter.

6.3.

Packages 153



Idris 155 308, R 1.3.1

When building or install packages the commandline flag --warnipkg will audit the project and warn of
any potentiable problems.

Once the test package has been installed, the command line option --package test makes it accessible
(abbreviated to -p test). For example:

idris -p test Main.idr

6.4 Uniqueness Types

Uniqueness Types are an experimental feature available from Idris 0.9.15. A value with a unique type is
guaranteed to have at most one reference to it at run-time, which means that it can safely be updated
in-place, reducing the need for memory allocation and garbage collection. The motivation is that we
would like to be able to write reactive systems, programs which run in limited memory environments,
device drivers, and any other system with hard real-time requirements, ideally while giving up as little
high level conveniences as possible.

They are inspired by linear types, Uniqueness Types| in the Clean programming language, and ownership
types and borrowed pointers in the Rust programming language.

Some things we hope to be able to do eventually with uniqueness types include:
e Safe, pure, in-place update of arrays, lists, etc
o Provide guarantees of correct resource usage, state transitions, etc

o Provide guarantees that critical program fragments will never allocate

6.4.1 Using Uniqueness

If x : Tand T : UniqueType, then there is at most one reference to x at any time during run-time
execution. For example, we can declare the type of unique lists as follows:

data UList : Type -> UniqueType where

Nil : UList a
(::) : a ->UList a -> UList a
If we have a value xs : UList a, then there is at most one reference to xs at run-time. The type

checker preserves this guarantee by ensuring that there is at most one reference to any value of a unique
type in a pattern clause. For example, the following function definition would be valid:

umap : (a -> b) -> UList a -> UList b
umap £ [] = []
umap £ (x :: xs) = f x :: umap f xs

In the second clause, xs is a value of a unique type, and only appears once on the right hand side, so this
clause is valid. Not only that, since we know there can be no other reference to the UList a argument,
we can reuse its space for building the result! The compiler is aware of this, and compiles this definition
to an in-place update of the list.

The following function definition would not be valid (even assuming an implementation of ++), however,
since xs appears twice:

dupList : UList a -> UList a
dupList xs = xs ++ Xs
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This would result in a shared pointer to xs, so the typechecker reports:

unique.idr:12:5:Unique name xs is used more than once

If we explicitly copy, however, the typechecker is happy:

dup : UList a -> UList a
dup [1 = []
dup (x :: xs) =x :: x :: dup xs

Note that it’ s fine to use x twice, because a is a Type, rather than a UniqueType.

There are some other restrictions on where a UniqueType can appear, so that the uniqueness property
is preserved. In particular, the type of the function type, (x : a) -> b depends on the type of a or
b - if either is a UniqueType, then the function type is also a UniqueType. Then, in a data declaration,
if the type constructor builds a Type, then no constructor can have a UniqueType. For example, the
following definition is invalid, since it would embed a unique value in a possible non-unique value:

data BadList : UniqueType -> Type where
Nil : {a : UniqueType} -> Badlist a
(::) : {a : UniqueType} -> a -> BadlList a -> BadlList a

Finally, types may be polymorphic in their uniqueness, to a limited extent. Since Type and UniqueType
are different types, we are limited in how much we can use polymorphic functions on unique types. For
example, if we have function composition defined as follows:

(.) : {a, b, ¢ : Type} > (b -> ¢c) > (a > b) ->a ->c¢
() fgx=1f (g x)

And we have some functions over unique types:

foo : UList a -> UList b

bar : UList b -> UList c

Then we cannot compose foo and bar as bar . foo, because UList does not compute a Type! Instead,
we can define composition as follows:

(.) : {a, b, ¢ : Typex} -> (b => ¢c) -> (a -> b) > a -> ¢
() fgx=1f (gx)

The Type* type stands for either unique or non-unique types. Since such a function may be passed a
UniqueType, any value of type Type* must also satisfy the requirement that it appears at most once on
the right hand side.

Borrowed Types

It quickly becomes obvious when working with uniqueness types that having only one reference at a time
can be painful. For example, what if we want to display a list before updating it?

showU : Show a => UList a -> String

showU xs = "[" ++ showU' xs ++ "]" where
showU' : UList a -> String
showU' [] = ""
showU' [x] = show x
showU' (x :: xs) = show x ++ ", " ++ showU' xs

This is a valid definition of showU, but unfortunately it consumes the list! So the following function
would be invalid:
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printAndUpdate : UList Int -> I0 ()

printAndUpdate xs = do putStrLn (showU xs)
let xs' = umap (*2) xs -- zs no longer available!
putStrLn (showU xs')

Still, one would hope to be able to display a unique list without problem, since it merely inspects the list;
there are no updates. We can achieve this, using the notion of borrowing. A Borrowed type is a Unique
type which can be inspected at the top level (by pattern matching, or by lending to another function)
but no further. This ensures that the internals (i.e. the arguments to top level patterns) will not be
passed to any function which will update them.

Borrowed converts a UniqueType to a BorrowedType. It is defined as follows (along with some additional
rules in the typechecker):

data Borrowed : UniqueType -> BorrowedType where
Read : {a : UniqueType} -> a -> Borrowed a

implicit
lend : {a : UniqueType} -> a -> Borrowed a
lend x = Read x

A value can be “lent” to another function using lend. Arguments to lend are not counted by the type
checker as a reference to a unique value, therefore a value can be lent as many times as desired. Using
this, we can write showU as follows:

showU : Show a => Borrowed (UList a) -> String

showU xs = "[" ++ showU' xs ++ "]" where
showU' : Borrowed (UList a) -> String
showU' [] = "
showU' [x] = show x
showU' (Read (x :: xs)) = show x ++ ", " ++ showU' (lend xs)

Unlike a unique value, a borrowed value may be referred to as many times as desired. However, there is a
restriction on how a borrowed value can be used. After all, much like a library book or your neighbour’ s
lawnmower, if a function borrows a value it is expected to return it in exactly the condition in which it
was received!

The restriction is that when a Borrowed type is matched, any pattern variables under the Read which
have a unique type may not be referred to at all on the right hand side (unless they are themselves lent
to another function).

Uniqueness information is stored in the type, and in particular in function types. Once we’ re in a unique
context, any new function which is constructed will be required to have unique type, which prevents the
following sort of bad program being implemented:

foo : UList Int -> I0 ()

foo xs = do let £ = \x : Int => showU xs
putStrln $ free xs
putStrln $ £ 42
pure O

Since lend is implicit, in practice for functions to lend and borrow values merely requires the argument
to be marked as Borrowed. We can therefore write showU as follows:

showU : Show a => Borrowed (UList a) -> String

showU xs = "[" ++ showU' xs ++ "]" where
showU' : Borrowed (UList a) -> String
ShOWU' [] = n"n

showU' [x] = show x

(8yNeéatezgeam)
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(cznayLéat)
showU' (x :: xs) = show x ++ ", " ++ showU' xs

Problems/Disadvantages/Still to do--

This is a work in progress, there is lots to do. The most obvious problem is the loss of abstraction. On
the one hand, we have more precise control over memory usage with UniqueType and BorrowedType,
but they are not in general compatible with functions polymorphic over Type. In the short term, we can
start to write reactive and low memory systems with this, but longer term it would be nice to support
more abstraction.

We also haven’ t checked any of the metatheory, so this could all be fatally flawed! The implementation
is based to a large extent on|Uniqueness Typing Simplified, by de Vries et al, so there is reason to believe
things should be fine, but we still have to do the work.

Much as there are with linear types, there are some annoyances when trying to prove properties of
functions with unique types (for example, what counts as a use of a value). Since we require at most
one use of a value, rather than ezactly one, this seems to be less of an issue in practice, but still needs
thought.

6.5 New Foreign Function Interface

Ever since Idris has had multiple backends compiling to different target languages on potentially different
platforms, we have had the problem that the foreign function interface (FFI) was written under the
assumption of compiling to C. As a result, it has been hard to write generic code for multiple targets,
or even to be sure that if code compiles that it will run on the expected target.

As of 0.9.17, Idris will have a new foreign function interface (FFI) which is aware of multiple targets.
Users who are working with the default code generator can happily continue writing programs as before
with no changes, but if you are writing bindings for an external library, writing a back end, or working
with a non-C back end, there are some things you will need to be aware of, which this page describes.

6.5.1 The I0' monad, and main

The I0 monad exists as before, but is now specific to the C backend (or, more precisely, any backend
whose foreign function calls are compatible with C.) Additionally, there is now an I0' monad, which is
parameterised over a FFI descriptor:

data I0' : (lang : FFI) -> Type -> Type
The Prelude defines two FFI descriptors which are imported automatically, for C and JavaScript/Node,
and defines I0 to use the C FFI and JS_IO to use the JavaScript FFI:

FFI_C : FFI
FFI_JS : FFI

I0 : Type —-> Type
I0 a = I0' FFI_C a

JS_I0 : Type -> Type
JS_I0 a = I0' FFI_JS a
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As before, the entry point to an Idris program is main, but the type of main can now be any implemen-
tation of I0', e.g. the following are both valid:

main : I0 ()
main : JS_I0 ()

The FFI descriptor includes details about which types can be marshalled between the foreign language
and Idris, and the “target” of a foreign function call (typically just a String representation of the
function’ s name, but potentially something more complicated such as an external library file or even a
URL).

6.5.2 FFI descriptors

An FFT descriptor is a record containing a predicate which holds when a type can be marshalled, and
the type of the target of a foreign call:

record FFI where
constructor MKFFI
ffi_types : Type -> Type
ffi_fn : Type

For C, this is:

/1] Supported C integer types

public export

data C_IntTypes : Type -> Type where
C_IntChar : C_IntTypes Char
C_IntNative : C_IntTypes Int
C_IntBits8 : C_IntTypes Bits8
C_IntBitsl6 : C_IntTypes Bitsl16
C_IntBits32 : C_IntTypes Bits32
C_IntBits64 : C_IntTypes Bits64

|1l Supported C function types

public export

data C_FnTypes : Type -> Type where
C_Fn : C_Types s -> C_FnTypes t -> C_FnTypes (s -> t)
C_FnI0 : C_Types t -> C_FnTypes (I0' FFI_C t)
C_FnBase : C_Types t -> C_FnTypes t

/1] Supported C foreign types
public export
data C_Types : Type -> Type where

C_Str : C_Types String
C_Float : C_Types Double
C_Ptr : C_Types Ptr

C_MPtr : C_Types ManagedPtr

C_Unit : C_Types ()

C_Any : C_Types (Raw a)

C_FnT : C_FnTypes t -> C_Types (CFnPtr t)
C_IntT : C_IntTypes i -> C_Types i

/Il A descriptor for the C FFI. See the constructors of C_Types’
/1] and “C_IntTypes' for the concrete types that are available.
Jerror_reverse
public export
FFI_C : FFI

FFI_C = MKFFI C_Types String String
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6.5.3 Linking foreign code

This is the example of linking C code.

Example Makefile

6.5.4 Foreign calls

To call a foreign function, the foreign function is used. For example:

do_fopen : String -> String -> I0 Ptr
do_fopen f m
= foreign FFI_C "fileOpen" (String -> String -> I0 Ptr) f m

The foreign function takes an FFI description, a function name (the type is given by the £fi_fn field
of FFI_C here), and a function type, which gives the expected types of the remaining arguments. Here,
we’ re calling an external function fileOpen which takes, in the C, a char* file name, a char* mode,
and returns a file pointer. It is the job of the C back end to convert Idris String to C char* and vice
versa.

The argument types and return type given here must be present in the fn_types predicate of the FFI_C
description for the foreign call to be valid.

Note The arguments to foreign must be known at compile time, because the foreign calls are generated
statically. The %inline directive on a function can be used to give hints to help this, for example a
shorthand for calling external JavaScript functions:

%inline

jscall : (fname : String) -> (ty : Type) ->
{auto fty : FTy FFI_JS [1 ty} —-> ty

jscall fname ty = foreign FFI_JS fname ty

C callbacks

It is possible to pass an Idris function to a C function taking a function pointer by using CFnPtr in the
function type. The Idris function is passed to MkCFnPtr in the arguments. The example below shows
declaring the C standard library function gqsort which takes a pointer to a comparison function.

myComparer : Ptr -> Ptr -> Int
myComparer = ...

gsort : Ptr -> Int -> Int -> I0 ()

gsort data elems elsize = foreign FFI_C "gsort"
(Ptr -> Int -> Int -> CFnPtr (Ptr -> Ptr -> Int) -> I0 ())
data elems elsize (MkCFnPtr myComparer)

There are a few limitations to callbacks in the C FFI. The foreign function can’ t take the function to
make a callback of as an argument. This will give a compilation error:

-— This does not work
example : (Int -> ()) -> I0 ()
example f = foreign FFI_C '"callbacker" (CFnPtr (Int -> ()) -> I0 ) £

Note that the function that is used as a callback can’ t be a closure, that is it can’ t be a partially
applied function. This is because the mechanism used is unable to pass the closed-over values through C.
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If we want to pass Idris values to the callback we have to pass them through C explicitly. Non-primitive
Idris values can be passed to C via the Raw type.

The other big limitation is that it doesn’ t support IO functions. Use unsafePerformI0 to wrap them
(i.e. to make an IO function usable as a callback, change the return type from IOr to r, and change the
= do to = unsafePerformIO $§ do).

There are two special function names: %wrapper returns the function pointer that wraps an Idris function.
This is useful if the function pointer isn’ t taken by a C function directly but should be inserted into a
data structure. A foreign declaration using %wrapper must return I0 Ptr.

-- this returns the C function pointer to a gsort comparer

example_wrapper : I0 Ptr

example_wrapper = foreign FFI_C "Jwrapper" (CFnPtr (Ptr -> Ptr -> Int) -> IO Ptr)
(MkCFnPtr myComparer)

%dynamic calls a C function pointer with some arguments. This is useful if a C function returns or
data structure contains a C function pointer, for example structs of function pointers are common in
object-oriented C such as in COM or the Linux kernel. The function type contains an extra Ptr at the
start for the function pointer. %dynamic can be seen as a pseudo-function that calls the function in the
first argument, passing the remaining arguments to it.

-- we have a pointer to a function with the signature int f(int), call %t
example_dynamic : Ptr -> Int -> IO Int
example_dynamic fn x = foreign FFI_C "Jdynamic" (Ptr -> Int -> IO Int) fn x

If the foreign name is prefixed by a &, it is treated as a pointer to the global variable with the following
name. The type must be just I0 Ptr.

-- access the global variable errno
errno : I0 Ptr
errno = foreign FFI_C "&errno" (I0 Ptr)

If the foreign name is prefixed by a #, the name is pasted in literally. This is useful to access constants
that are preprocessor definitions (like INT_MAX).

%include C "limits.h"

-- access the preprocessor definition INT_MAX
intMax : IO Int

intMax = foreign FFI_C "#INT_MAX" (IO Int)

main : I0 O
main = print !intMax

For more complicated interactions with C (such as reading and setting fields of a C struct), there is a
module CFFI available in the contrib package.

C heap

Idris has two heaps where objects can be allocated:
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FP heap

C heap

Cheney-collected

Mark-and-sweep-collected

Garbage collections touches only live objects.

Garbage collection has to traverse all registered
items.

Ideal for FP-style rapid allocation of lots of
small short-lived pieces of memory, such as
data constructors.

Ideal for C-style allocation of a few big buffers.

Finalizers are impossible to support reason-
ably.

Items have finalizers that are called on deallocation.

Data is copied all the time (when collecting
garbage, modifying data, registering managed
pointers, etc.)

Copying does not happen.

Contains objects of various types.

Contains C heap items: (void *) pointers with fi-
nalizers. A finalizer is a routine that deallocates the
resources associated with the item.

Fixed set of object types.

The data pointer may point to anything, as long as
the finalizer cleans up correctly.

Not suitable for C resources and arbitrary
pointers.

Suitable for C resources and arbitrary pointers.

Values form a compact memory block.

Items are kept in a linked list.

Any Idris value, most notably ManagedPtr.

Items represented by the Idris type CData.

Data of ManagedPtr allocated in C, buffer then
copied into the FP heap.

Data allocated in C, pointer copied into the C heap.

Allocation and reallocation not possible from C
code (without having a reference to the VM).
Everything is copied instead.

Allocated and reallocate freely in C, registering the
allocated items in the FFI.

The FP heap is the primary heap. It may contain values of type CData, which are references to items
in the C heap. A C heap item contains a (void *) pointer and the corresponding finalizer. Once a C
heap item is no longer referenced from the FP heap, it is marked as unused and the next GC sweep will
call its finalizer and deallocate it.

There is no Idris interface for CData other than its type and FFI.

Usage from C code

o Although not enforced in code, CData is meant to be opaque and non-RTS code (such as libraries
or C bindings) should access only its (void *) field called data.

o Feel free to mutate both the pointer data (eg. after calling realloc) and the memory it points to.
However, keep in mind that this must not break Idris’ s referential transparency.

o WARNING! If you call cdata_allocate or cdata_manage, the resulting CData object must be
returned from your FFI function so that it is inserted in the C heap by the RTS. Otherwise the
memory will be leaked.

some_allocating_fun : Int -> IO CData
some_allocating_fun i = foreign FFI_C "some_allocating_fun" (Int -> IO CData) i

other_fun : CData -> Int -> I0 Int
other_fun cd i = foreign FFI_C "other_fun" (CData -> Int -> I0 Int) cd i

#include "idris_rts.h"”

static void finalizer(void * data)

(8yNeéatezgeam)
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(cznayLéat)
{
MyStruct * ptr = (MyStruct *) data;
free_something(ptr->something) ;
free(ptr);
}
CData some_allocating_fun(int arg)
{
size_t size = sizeof(...);
void * data = (void *) malloc(size);
/] ...
return cdata_manage(data, size, finalizer);
}
int other_fun(CData cd, int arg)
{
int result = foo(cd->data);
return result;
}

The Raw type constructor allows you to access or return a runtime representation of the value. For
instance, if you want to copy a string generated from C code into an Idris value, you may want to return
a Raw String” “instead of a ~~String and use MKSTR or MKSTRlen to copy it over.

getString : () -> I0 (Raw String)
getString () = foreign FFI_C "get_string" (I0 (Raw String))

const VAL get_string ()

{
char * c_string = get_string_allocated_with_malloc()
const VAL idris_string = MKSTR(c_string);
free(c_string) ;
return idris_string

}

FFI implementation

In order to write bindings to external libraries, the details of how foreign works are unnecessary —
you simply need to know that foreign takes an FFI descriptor, the function name, and its type. It is
instructive to look a little deeper, however:

The type of foreign is as follows:

foreign : (ffi : FFI)
-> (fname : ffi_fn f)
-> (ty : Type)
-> {auto fty : FTy ffi [] ty}
-> ty

The important argument here is the implicit £ty, which contains a proof (FTy) that the given type is
valid according to the FFI description £fi:

data FTy : FFI -> List Type -> Type -> Type where
FRet : ffi_types £ t -> FTy £ xs (I0' f t)
FFun : ffi_types f s -> FTy f (s :: xs) t -> FTy f xs (s -> t)

Notice that this uses the £fi_types field of the FFI descriptor — these arguments to FRet and FFun give
explicit proofs that the type is valid in this FFI. For example, the above do_fopen builds the following
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implicit proof as the fty argument to foreign:

FFun C_Str (FFun C_Str (FRet C_Ptr))

6.5.5 Compiling foreign calls

(This section assumes some knowledge of the Idris internals.)

When writing a back end, we now need to know how to compile foreign. We’ 1l skip the details here of
how a foreign call reaches the intermediate representation (the IR), though you can look in I0.idr in
the prelude package to see a bit more detail — a foreign call is implemented by the primitive function
mkForeignPrim. The important part of the IR as defined in Lang.hs is the following constructor:

data LExp = ...
| LForeign FDesc -- Function descriptor
FDesc -- Return type descriptor
[(FDesc, LExp)]

So, a foreign call appears in the IR as the LForeign constructor, which takes a function descriptor (of
a type given by the £fi_fn field in the FFI descriptor), a return type descriptor (given by an application
of FTy), and a list of arguments with type descriptors (also given by an application of FTy).

An FDesc describes an application of a name to some arguments, and is really just a simplified subset
of an LExp:

FCon Name

data FDesc =
| FStr String
I
|

FUnknown
FApp Name [FDesc]

There are corresponding structures in the lower level IRs, such as the defunctionalised, simplified and

bytecode forms.

Our do_fopen example above arrives in the LExp form as:
LForeign (FStr "fileOpen") (FCon (sUN "C_Ptr"))
[(FCon (sUN "C_Str"), £f), (FCon (sUN "C_Str"), m)]

(Assuming that £ and m stand for the LExp representations of the arguments.) This information should
be enough for any back end to marshal the arguments and return value appropriately.

EME:  When processing FDesc, be aware that there may be implicit arguments, which have not been
erased. For example, C_IntT has an implicit argument i, so will appear in an FDesc as something of the
form FApp (sUN "C_IntT") [i, t] where i is the implicit argument (which can be ignored) and t is
the descriptor of the integer type. See CodegenC.hs, specifically the function toFType, to see how this
works in practice.

6.5.6 JavaScript FFI descriptor

The JavaScript FFI descriptor is a little more complex, because the JavaScript FFI supports marshalling
functions. It is defined as follows:
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mutual
data JsFn t = MkJsFn t

data JS_IntTypes : Type -> Type where
JS_IntChar : JS_IntTypes Char
JS_IntNative : JS_IntTypes Int

data JS_FnTypes : Type -> Type where
JS_Fn : JS_Types s —-> JS_FnTypes t -> JS_FnTypes (s -> t)
JS_FnIO : JS_Types t —-> JS_FnTypes (I0' 1 t)
JS_FnBase : JS_Types t -> JS_FnTypes t

data JS_Types : Type -> Type where

JS_Str : JS_Types String

JS_Float : JS_Types Double

JS_Ptr : JS_Types Ptr

JS_Unit : JS_Types O

JS_FnT : JS_FnTypes a -> JS_Types (JsFn a)

JS_IntT : JS_IntTypes i -> JS_Types i

The reason for wrapping function types in a JsFn is to help the proof search when building FTy. We
hope to improve proof search eventually, but for the moment it works much more reliably if the indices
are disjoint! An example of using this appears in [IdrisScript| when setting timeouts:

setTimeout : (() -> JS_I0 ()) -> (millis : Int) -> JS_IO Timeout
setTimeout f millis = do
timeout <- jscall "setTimeout (%0, %1)"
(JsFn (() -> JS_I0 (O) -> Int -> JS_IO Ptr)
(MkJsFn f) millis
pure $ MkTimeout timeout

6.6 Syntax Guide

Examples are mostly adapted from the Idris tutorial.

6.6.1 Source File Structure

Source files consist of:
1. An optional [Module Header] (éat 165).
2. Zero or more (éat 165).
3. Zero or more declarations, e.g. (éat 165), (éat 166), etc.

For example:

module MyModule -- module header
import Data.Vect -- an import
Jdefault total -- a directive
foo : Nat -- a declaration
foo = 5
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Module Header

A file can start with a module header, introduced by the module keyword:

module Semantics

Module names can be hierarchical, with parts separated by .:

module Semantics.Transform

Each file can define only a single module, which includes everything defined in that file.

Like with declarations, a (éat 170) can be used to provide documentation for a module:

/1] Implementation of predicate transformer semantics.
module Semantics.Transform

Imports

An import makes the names in another module available for use by the current module:

import Data.Vect

All the declarations in an imported module are available for use in the file. In a case where a name
is ambiguous — e.g. because it is imported from multiple modules, or appears in multiple visible
namespaces — the ambiguity can be resolved using |Qualified Names| (éat 170). (Often, the compiler can
resolve the ambiguity for you, using the types involved.)

Imported modules can be given aliases to make qualified names more compact:

import Data.Vect as V

Note that names made visible by import are not, by default, re-exported to users of the module being
written. This can be done using import public:

import public Data.Vect

6.6.2 Variables

A variable is always defined by defining its type on one line, and its value on the next line, using the
syntax

<id> : <type>
<id> = <value>

Examples
x : Int
x = 100

hello : String
hello = "hello"
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6.6.3 Types

In Idris, types are first class values. So a type declaration is the same as just declaration of a variable
whose type is Type. In Idris, variables that denote a type need not be capitalised. Example:

MyIntType : Type
MyIntType = Int

a more interesting example:
MyListType : Type

MyListType = List Int

While capitalising types is not required, the rules for generating implicit arguments mean it is often a
good idea.

Data types
Idris provides two kinds of syntax for defining data types. The first, Haskell style syntax, defines a
regular algebraic data type. For example

data Either a b = Left a | Right b

or

data List a = Nil | (::) a (List a)

The second, more general kind of data type, is defined using Agda or GADT style syntax. This syntax
defines a data type that is parameterised by some values (in the Vect example, a value of type Nat and
a value of type Type).

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) ¢ (x: a) > (xs : Vect n a) -> Vect (S n) a

The signature of type constructors may use dependent types

data DPair : (a : Type) -> (a -> Type) -> Type where
MkDPair : {P : a -> Type} -> (x : a) -> (pf : P x) -> DPair a P

Records

There is a special syntax for data types with one constructor and multiple fields.

record A a where
constructor MkA
foo, bar : a
baz : Nat

This defines a constructor as well as getter and setter function for each field.

MkA : a -> a -> Nat > A a
foo : A a > a
set_foo : a > A a->Aa

The types of record fields may depend on the value of other fields
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record Collection a where
constructor MkCollection
size : Nat
items : Vect size a

Setter functions are only provided for fields that do not use dependant types. In the example above
neither set_size nor set_items are defined.

Co-data

Inifinite data structures can be introduced with the codata keyword.
codata Stream : Type -> Type where

(::) a -> Stream a -> Stream a
This is syntactic sugar for the following, which is usually preferred:
data Stream : Type -> Type where

(::) a -> Inf (Stream a) -> Stream a

Every occurence of the defined type in a constructor argument will be wrapped in the Inf type construc-
tor. This has the effect of delaying the evaluation of the second argument when the data constructor is
applied. An Inf argument is constructed using Delay (which Idris will insert implicitly) and evaluated
using Force (again inserted implicitly).

Furthermore, recursive calls under a Delay must be guarded by a constructor to pass the totality checker.

6.6.4 Operators

Arithmetic

A MM MM
*
<K <<

x*y)+ (a/b)

Equality and Relational

LT B T T
AR |
non
<< <

Conditional

x && y

x |ly
not x
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6.6.5 Conditionals

If Then Else

if <test> then <true> else <false>

Case Expressions

case <test> of
<case 1> => <expr>
<case 2> => <expr>

otherwise => <expr>

6.6.6 Functions
Named

Named functions are defined in the same way as variables, with the type followed by the definition.

<id> : <argument type> -> <return type>
<id> arg = <expr>

Example

plusOne : Int -> Int
plusOne x = x + 1

Functions can also have multiple inputs, for example

makeHello : String -> String -> String
makeHello first last = "hello, my name is " ++ first ++ " " ++ last

Functions can also have named arguments. This is required if you want to annotate parameters in a
docstring. The following shows the same makeHello function as above, but with named parameters
which are also annotated in the docstring

||| Makes a string introducing a person

||| @first The person's first name

||| @last The person's last name

makeHello : (first : String) -> (last : String) -> String
makeHello first last = "hello, my name is " ++ first ++ " " ++ last

Like Haskell, Idris functions can be defined by pattern matching. For example

sum : List Int -> Int
sum [] 0
sum (x :: xs8) = x + (sum xs)

Similarly case analysis looks like

answerString : Bool -> String
answerString False = "Wrong answer"
answerString True = "Correct answer"
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Dependent Functions

Dependent functions are functions where the type of the return value depends on the input value. In
order to define a dependent function, named parameters must be used, since the parameter will appear
in the return type. For example, consider

zeros : (n : Nat) -> Vect n Int
zeros Z = [
zeros (S k) = 0 :: (zeros k)

In this example, the return type is Vect n Int which is an expression which depends on the input
parameter n.

Anonymous

Arguments in anonymous functions are separated by comma.

(\x => <expr>)
(\x, y => <expr>)

Modifiers
Visibility

public export
export
private

Totality

total
partial
covering

Sets explicitly to which extent pattern matching is terminating and/or exhaustive. A partial pattern
matching makes no assumption. A covering pattern matching ensures that pattern matching is exhaus-
tive on its clauses. Furthermore, a total pattern matching enforces both exhaustivity and termination
of the evaluation of its clauses.

Implicit Coercion

implicit

Options

Jexport
Jhint
Jmno_implicit

(8 Néatezgga)
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(¢znéyLéat)
Jerror_handler
Jerror_reverse
Jreflection
Jispecialise [<name list>]

6.6.7 Misc

Qualified Names

If multiple declarations with the same name are visible, using the name can result in an ambiguous
situation. The compiler will attempt to resolve the ambiguity using the types involved. If it’ s unable
— for example, because the declarations with the same name also have the same type signatures — the
situation can be cleared up using a qualified name.

A qualified name has the symbol’ s namespace prefixed, separated by a .:

Data.Vect.length

This would specifically reference a length declaration from Data.Vect.
Qualified names can be written using two different shorthands:
1. Names in modules that are (éat 165) using an alias can be qualified by the alias.

2. The name can be qualified by the shortest unique suffix of the namespace in question. For example,
the length case above can likely be shortened to Vect.length.

Comments

-- Single Line
{- Multiline -}
||| Docstring (goes before definition)

Multi line String literals

foo = nnn
this is a
string literal"""

6.6.8 Directives

%1ib <path>

Ylink <path>

%flag <path>

%include <path>

Jhide <function>
Jfreeze <name>

Jaccess <accessibility>
Jdefault <totality>
Jlogging <level 0--11>

(85 Neéatezgeam)
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(cznayLéat)
Jdynamic <list of libs>
Jname <list of names>
Jerror_handlers <list of names>
Jlanguage <extension>

6.7 Erasure By Usage Analysis

This work stems from this feature proposal (obsoleted by this page). Beware that the information in the
proposal is out of date — and sometimes even in direct contradiction with the eventual implementation.

6.7.1 Motivation

Traditional dependently typed languages (Agda, Coq) are good at erasing proofs (either via irrelevance
or an extra universe).

half : (n : Nat) -> Even n -> Nat
half Z EZ = Z
half (S (S n)) (ES pf) = S (half n pf)

For example, in the above snippet, the second argument is a proof, which is used only to convince the
compiler that the function is total. This proof is never inspected at runtime and thus can be erased.
In this case, the mere existence of the proof is sufficient and we can use irrelevance-related methods to
achieve erasure.

However, sometimes we want to erase indices and this is where the traditional approaches stop being
useful, mainly for reasons described in the original proposal.

uninterleave : {n : Nat} -> Vect (n * 2) a -> (Vect n a, Vect n a)
uninterleave [] = ([1 , [1)
uninterleave (x :: y :: rest) with (unzipPairs rest)

| (xs, ys) = (x :: xs, y :: ys)

Notice that in this case, the second argument is the important one and we would like to get rid of the n
instead, although the shape of the program is generally the same as in the previous case.

There are methods described by Brady, McBride and McKinna in [BMMO04] to remove the indices from
data structures, exploiting the fact that functions operating on them either already have a copy of the
appropriate index or the index can be quickly reconstructed if needed. However, we often want to erase
the indices altogether, from the whole program, even in those cases where reconstruction is not possible.

The following two sections describe two cases where doing so improves the runtime performance asymp-
totically.

Binary numbers

e O(n) instead of O(log n)
Consider the following Nat-indexed type family representing binary numbers:

data Bin : Nat -> Type where
N : Bin O
0 : {n : Nat} -> Bin n -> Bin (0 + 2#n)
I : {n : Nat} -> Bin n -> Bin (1 + 2%*n)
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These are supposed to be (at least asymptotically) fast and memory-efficient because their size is loga-
rithmic compared to the numbers they represent.

Unfortunately this is not the case. The problem is that these binary numbers still carry the unary
indices with them, performing arithmetic on the indices whenever arithmetic is done on the binary
numbers themselves. Hence the real representation of the number 15 looks like this:

-> ->I->1I->N
S Z
Z

N »nwnwnH

NnW®nwmwwmn n wn H

The used memory is actually linear, not logarithmic and therefore we cannot get below O(n) with time
complexities.

One could argue that Idris in fact compiles Nat via GMP but that’ s a moot point for two reasons:

e First, whenever we try to index our data structures with anything else than Nat, the compiler is
not going to come to the rescue.

e Second, even with Nat, the GMP integers are still there and they slow the runtime down.

This ought not to be the case since the Nat are never used at runtime and they are only there for
typechecking purposes. Hence we should get rid of them and get runtime code similar to what an Idris
programmer would write.

U-views of lists

e O(n2) instead of O(n)
Consider the type of U-views of lists:

data U : List a -> Type where
nil : U []
one : (z : a) > U [z]
two : {xs : List a} -> (x : a) > (u : Uxs) > (y : a) -> U (x :: xs ++ [y])

For better intuition, the shape of the U-view of [x0,x1,x2,z,y2,y1,y0] looks like this:

x0 yO (two)
x1 g1 (two)
X2  y2 (two)

z (one)

When recursing over this structure, the values of xs range over [x0,x1,x2,z,y2,y1,y0], [x1,x2,z,
y2,y1], [x2,z,y2], [z]. No matter whether these lists are stored or built on demand, they take up a
quadratic amount of memory (because they cannot share nodes), and hence it takes a quadratic amount
of time just to build values of this index alone.

But the reasonable expectation is that operations with U-views take linear time — so we need to erase
the index xs if we want to achieve this goal.
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6.7.2 Changes to Idris

Usage analysis is run at every compilation and its outputs are used for various purposes. This is actually
invisible to the user but it’ s a relatively big and important change, which enables the new features.

Everything that is found to be unused is erased. No annotations are needed, just don’ t use the thing
and it will vanish from the generated code. However, if you wish, you can use the dot annotations to get
a warning if the thing is accidentally used.

“Being used” in this context means that the value of the “thing” may influence run-time behaviour
of the program. (More precisely, it is not found to be irrelevant to the run-time behaviour by the usage
analysis algorithm.)

“Things” considered for removal by erasure include:
e function arguments
o data constructor fields (including record fields and dictionary fields of interface implementations)

For example, Either often compiles to the same runtime representation as Bool. Constructor field
removal sometimes combines with the newtype optimisation to have quite a strong effect.

There is a new compiler option —-warnreach, which will enable warnings coming from erasure. Since
we have full usage analysis, we can compile even those programs that violate erasure annotations —it’ s
just that the binaries may run slower than expected. The warnings will be enabled by default in future
versions of Idris (and possibly turned to errors). However, in this transitional period, we chose to keep
them on-demand to avoid confusion until better documentation is written.

Case-tree elaboration tries to avoid using dotted “things” whenever possible. (NB. This is not yet
perfect and it’ s being worked on: https://gist.github.com/ziman/10458331)

Postulates are no longer required to be collapsible. They are now required to be unused instead.

6.7.3 Changes to the language

You can use dots to mark fields that are not intended to be used at runtime.
data Bin : Nat -> Type where

N : Bin O

0 : .{n : Nat} -> Bin n -> Bin (0 + 2*n)

I : .{n : Nat} -> Bin n -> Bin (1 + 2x*n)

If these fields are found to be used at runtime, the dots will trigger a warning (with --warnreach).

Note that free (unbound) implicits are dotted by default so, for example, the constructor 0 can be defined
as:

0 : Bin n -> Bin (0 + 2*n)

and this is actually the preferred form.

If you have a free implicit which is meant to be used at runtime, you have to change it into an (undotted)
{bound : implicit}.

You can also put dots in types of functions to get more guarantees.

half : (n : Nat) -> .(pf : Even n) -> Nat

and free implicits are automatically dotted here, too.
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6.7.4 What it means

Dot annotations serve two purposes:
« influence case-tree elaboration to avoid dotted variables
e trigger warnings when a dotted variable is used

However, there’ s no direct connection between being dotted and being erased. The compiler erases
everything it can, dotted or not. The dots are there mainly to help the programmer (and the compiler)
refrain from using the values they want to erase.

6.7.5 How to use it

Ideally, few or no extra annotations are needed — in practice, it turns out that having free implicits
automatically dotted is enough to get good erasure.

Therefore, just compile with —-warnreach to see warnings if erasure cannot remove parts of the program.

However, those programs that have been written without runtime behaviour in mind, will need some
help to get in the form that compiles to a reasonable binary. Generally, it’ s sufficient to follow erasure
warnings (which may be sometimes unhelpful at the moment).

6.7.6 Benchmarks

o source: https://github.com/ziman /idris-benchmarks
o results: http://ziman.functor.sk/erasure-bm/

It can be clearly seen that asymptotics are improved by erasure.

6.7.7 Shortcomings

You can’ t get warnings in libraries because usage analysis starts from Main.main. This will be solved
by the planned %default_usage pragma.

Usage warnings are quite bad and unhelpful at the moment. We should include more information and
at least translate argument numbers to their names.

There is no decent documentation yet. This wiki page is the first one.

There is no generally accepted terminology. We switch between “dotted” , “unused” , “erased” ,
“irrelevant” , “inaccessible” , while each has a slightly different meaning. We need more consistent
and understandable naming.

If the same type is used in both erased and non-erased context, it will retain its fields to accommodate
the least common denominator — the non-erased context. This is particularly troublesome in the case
of the type of (dependent) pairs, where it actually means that no erasure would be performed. We
should probably locate disjoint uses of data types and split them into “sub-types” . There are three
different flavours of dependent types now: Sigma (nothing erased), Exists (first component erased),
Subset (second component erased).

Case-tree building does not avoid dotted values coming from pattern-matched constructors (https://gist.
github.com /ziman/10458331)). This is to be fixed soon. (Fixed.)
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Higher-order function arguments and opaque functional variables are considered to be using all their
arguments. To work around this, you can force erasure via the type system, using the Erased wrapper:
https://github.com /idris-lang/Idris-dev/blob/master/libs/base/Data/Erased.idr

Interface methods are considered to be using the union of all their implementations. In other words, an
argument of a method is unused only if it is unused in every implementation of the method that occurs
in the program.

6.7.8 Planned features

e Fixes to the above shortcomings in general.

e Improvements to the case-tree elaborator so that it properly avoids dotted fields of
data constructors. Done.

e Compiler pragma %default_usage used/unused and per-function overrides used and
unused, which allow the programmer to mark the return value of a function as used, even
if the function is not used in main (which is the case when writing library code). These
annotations will help library writers discover usage violations in their code before it is
actually published and used in compiled programs.

6.7.9 Troubleshooting
My program is slower

The patch introducing erasure by usage analysis also disabled some optimisations that were in place
before; these are subsumed by the new erasure. However, in some erasure-unaware programs, where
erasure by usage analysis does not exercise its full potential (but the old optimisations would have
worked), certain slowdown may be observed (up to ~10% according to preliminary benchmarking), due
to retention and computation of information that should not be necessary at runtime.

A simple check whether this is the case is to compile with —-warnreach. If you see warnings, there is
some unnecessary code getting compiled into the binary.

The solution is to change the code so that there are no warnings.

Usage warnings are unhelpful

This is a known issue and we are working on it. For now, see the section [How to read and resolve erasure

(éat, 176).

There should be no warnings in this function

A possible cause is non-totality of the function (more precisely, non-coverage). If a function is non-
covering, the program needs to inspect all arguments in order to detect coverage failures at runtime.
Since the function inspects all its arguments, nothing can be erased and this may transitively cause usage
violations. The solution is to make the function total or accept the fact that it will use its arguments
and remove some dots from the appropriate constructor fields and function arguments. (Please note that
this is not a shortcoming of erasure and there is nothing we can do about it.)

Another possible cause is the currently imperfect case-tree elaboration, which does not avoid dotted
constructor fields (see https://gist.github.com/ziman/10458331). You can either rephrase the function
or wait until this is fixed, hopefully soon. Fixed.
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The compiler refuses to recognise this thing as erased

You can force anything to be erased by wrapping it in the Erased monad. While this program triggers
usage warnings,

f : (g : Nat -> Nat) -> .(x : Nat) -> Nat

f gx=gx -- WARNING: g uses =

the following program does not:

f : (g : Erased Nat -> Nat) -> .(x : Nat) -> Nat
f g x =g (Erase x) -- 0K

6.7.10 How to read and resolve erasure warnings
Example 1

Consider the following program:

vlen : Vect n a -> Nat
vlen {n = n} xs = n

sumLengths : List (Vect n a) -> Nat
sumLengths 1 =0
sumLengths (v :: vs) = vlen v + sumLengths vs

main : I0 ()
main = print . sumLengths $ [[0,1],[2,3]]

When you compile it using --warnreach, there is one warning:

Main.sumLengths: inaccessible arguments reachable:
n (no more information available)

The warning does not contain much detail at this point so we can try compiling with --dumpcases
cases.txt and look up the compiled definition in cases.txt:

Main.sumLengths {e0} {el} {e2} =
case {e2} of
| Prelude.List.::({e6}) => LPlus (ATInt ITBig) ({e0}, Main.sumLengths({eO},
| Prelude.List.Nil() => 0

, {e61))

The reason for the warning is that sumLengths calls vlen, which gets inlined. The second clause of
sumLengths then accesses the variable n, compiled as {e0}. Since n is a free implicit, it is automatically
considered dotted and this triggers the warning.

A solution would be either making the argument n a bound implicit parameter to indicate that we wish
to keep it at runtime,

sumLengths : {n : Nat} -> List (Vect n a) -> Nat

or fixing vlen to not use the index:

vlen : Vect n a -> Nat
vlen [] = Z
vlen (x :: xs) = S (vlen xs)
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Which solution is appropriate depends on the usecase.

Example 2

Consider the following program manipulating value-indexed binary numbers.

data Bin : Nat -> Type where
N : Bin Z
0 : Binn -> Bin (0 + n + n)
I : Binn ->Bin (1 +n + n)

toN : (b : Bin n) -> Nat
toN N = Z

toN (0 {n} bs) =0 +n +n
toN (I {n} bs) =1+ n +n

main : I0 ()
main = print . toN $ I (I (0 (0 (I N))))

In the function toN, we attempted to “cheat” and instead of traversing the whole structure, we just
projected the value index n out of constructors I and 0. However, this index is a free implicit, therefore
it is considered dotted.

Inspecting it then produces the following warnings when compiling with --warnreach:

Main.I: inaccessible arguments reachable:
n from Main.toN arg# 1

Main.0: inaccessible arguments reachable:
n from Main.toN arg# 1

We can see that the argument n of both I and 0 is used in the function toN, argument 1.

At this stage of development, warnings only contain argument numbers, not names; this will hopefully be
fixed. When numbering arguments, we go from 0, taking free implicits first, left-to-right; then the bound
arguments. The function toN has therefore in fact two arguments: n (argument 0) and b (argument 1).
And indeed, as the warning says, we project the dotted field from b.

Again, one solution is to fix the function toN to calculate its result honestly; the other one is to accept
that we carry a Nat with every constructor of Bin and make it a bound implicit:

0 : {n : Nat} -> Bin n -> Bin (0 + n + n)
I : {n : Nat} -> bin n -> Bin (1 + n + n)

6.7.11 References

6.8 The IDE Protocol

The Idris REPL has two modes of interaction: a human-readable syntax designed for direct use in a
terminal, and a machine-readable syntax designed for using Idris as a backend for external tools.

6.8.1 Protocol Overview

The communication protocol is of asynchronous request-reply style: a single request from the client is
handled by Idris at a time. Idris waits for a request on its standard input stream, and outputs the answer
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or answers to standard output. The result of a request can be either success, failure, or intermediate
output; and furthermore, before the result is delivered, there might be additional meta-messages.

A reply can consist of multiple messages: any number of messages to inform the user about the progress
of the request or other informational output, and finally a result, either ok or error.

The wire format is the length of the message in characters, encoded in 6 characters hexadecimal, followed
by the message encoded as S-expression (sexp). Additionally, each request includes a unique integer
(counting upwards), which is repeated in all messages corresponding to that request.

An example interaction from loading the file /home/hannes/empty.idr looks as follows on the wire::

00002a((:load-file "/home/hannes/empty.idr") 1)

000039 (:write-string "Type checking /home/hannes/empty.idr" 1)
000025(:set-prompt "/home/hannes/empty" 1)

000032(:return (:ok "Loaded /home/hannes/empty.idr") 1)

The first message is the request from idris-mode to load the specific file, which length is hex 2a, decimal
42 (including the newline at the end). The request identifier is set to 1. The first message from Idris is
to write the string Type checking /home/hannes/empty.idr, another is to set the prompt to */home/
hannes/empty. The answer, starting with :return is ok, and additional information is that the file was
loaded.

There are three atoms in the wire language: numbers, strings, and symbols. The only compound object
is a list, which is surrounded by parenthesis. The syntax is:

A ::=DNUM | '"" STR '"' | ':' ALPHA+
S ::=A | "(C"S*x ') | nil

where NUM is either O or a positive integer, ALPHA is an alphabetical character, and STR is the contents of
a string, with " escaped by a backslash. The atom nil is accepted instead of () for compatibility with
some regexp pretty-printing routines.

The state of the Idris process is mainly the active file, which needs to be kept synchronised between the
editor and Idris. This is achieved by the already seen :load-file command.

The available commands include:

(:load-file FILENAME [LINE]) Load the named file. If a LINE number is provided, the
file is only loaded up to that line. Otherwise, the entire file is loaded.

(:interpret STRING) Interpret STRING at the Idris REPL, returning a highlighted result.

(:type-of STRING) Return the type of the name, written with Idris syntax in the STRING.
The reply may contain highlighting information.

(:case-split LINE NAME) Generate a case-split for the pattern variable NAME on program
line LINE. The pattern-match cases to be substituted are returned as a string with no
highlighting.

(:add-clause LINE NAME) Generate an initial pattern-match clause for the function de-
clared as NAME on program line LINE. The initial clause is returned as a string with no
highlighting.

(:add-proof-clause LINE NAME) Add a clause driven by the <== syntax.

(:add-missing LINE NAME) Add the missing cases discovered by totality checking the func-
tion declared as NAME on program line LINE. The missing clauses are returned as a string
with no highlighting.

(:make-with LINE NAME) Create a with-rule pattern match template for the clause of func-
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tion NAME on line LINE. The new code is returned with no highlighting.

(:make-case LINE NAME) Create a case pattern match template for the clause of function
NAME on line LINE. The new code is returned with no highlighting.

(:make-lemma LINE NAME) Create a top level function with a type which solves the hole
named NAME on line LINE.

(:proof-search LINE NAME HINTS) Attempt to fill out the holes on LINE named NAME by
proof search. HINTS is a possibly-empty list of additional things to try while searching.

(:docs-for NAME [MODE]) Look up the documentation for NAME, and return it as a high-
lighted string. If MODE is :overview, only the first paragraph of documentation is
provided for NAME. If MODE is :full, or omitted, the full documentation is returned for
NAME.

(:apropos STRING) Search the documentation for mentions of STRING, and return any found
as a list of highlighted strings.

(:metavariables WIDTH) List the currently-active holes, with their types pretty-printed
with WIDTH columns.

(:who-calls NAME) Get a list of callers of NAME.
(:calls-who NAME) Get a list of callees of NAME.

(:browse-namespace NAMESPACE) Return the contents of NAMESPACE, like :browse at the
command-line REPL.

(:normalise-term TM) Return a highlighted string consisting of the results of normalising
the serialised term TM (which would previously have been sent as the tt-term property
of a string).

(:show-term-implicits TM) Return a highlighted string consisting of the results of mak-
ing all arguments in serialised term TM (which would previously have been sent as the
tt-term property of a string) explicit.

(:hide-term-implicits TM) Return a highlighted string consisting of the results of mak-
ing all arguments in serialised term TM (which would previously have been sent as the
tt-term property of a string) follow their usual implicitness setting.

(:elaborate-term TM) Return a highlighted string consisting of the core language term cor-
responding to serialised term TM (which would previously have been sent as the tt-term
property of a string).

(:print-definition NAME) Return the definition of NAME as a highlighted string.

(:repl-completions NAME) Search names, types and documentations which contain NAME.
Return the result of tab-completing NAME as a REPL command.

:version Return the version information of the Idris compiler.

Possible replies include a normal final reply::
(:return (:ok SEXP [HIGHLIGHTING]))
(:return (:error String [HIGHLIGHTING]))
A normal intermediate reply::

(:output (:ok SEXP [HIGHLIGHTING]))
(:output (:error String [HIGHLIGHTING]))
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Informational and/or abnormal replies::

(:write-string String)
(:set-prompt String)
(:warning (FilePath (LINE COL) (LINE COL) String [HIGHLIGHTINGI))

Proof mode replies::

:start-proof-mode)

:write-proof-state [String] [HIGHLIGHTING])
:end-proof-mode)

twrite-goal String)

~N AN~~~

6.8.2 Output Highlighting

Idris mode supports highlighting the output from Idris. In reality, this highlighting is controlled by the
Idris compiler. Some of the return forms from Idris support an optional extra parameter: a list mapping
spans of text to metadata about that text. Clients can then use this list both to highlight the displayed
output and to enable richer interaction by having more metadata present. For example, the Emacs mode
allows right-clicking identifiers to get a menu with access to documentation and type signatures.

A particular semantic span is a three element list. The first element of the list is the index at which the
span begins, the second element is the number of characters included in the span, and the third is the
semantic data itself. The semantic data is a list of lists. The head of each list is a key that denotes what
kind of metadata is in the list, and the tail is the metadata itself.

The following keys are available:
name gives a reference to the fully-qualified Idris name
implicit provides a Boolean value that is True if the region is the name of an implicit argument
decor describes the category of a token, which can be type, function, data, keyword, or bound.

source-loc states that the region refers to a source code location. Its body is a collection of
key-value pairs, with the following possibilities:

filename provides the filename
start provides the line and column that the source location starts at as a two-element tail
end provides the line and column that the source location ends at as a two-element tail

text-formatting provides an attribute of formatted text. This is for use with natural-language
text, not code, and is presently emitted only from inline documentation. The potential values
are bold, italic, and underline.

link-href provides a URL that the corresponding text is a link to.
quasiquotation states that the region is quasiquoted.
antiquotation states that the region is antiquoted.

tt-term A serialised representation of the Idris core term corresponding to the region of text.
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6.8.3 Source Code Highlighting

Idris supports instructing editors how to colour their code. When elaborating source code or REPL
input, Idris will locate regions of the source code corresponding to names, and emit information about
these names using the same metadata as output highlighting.

These messages will arrive as replies to the command that caused elaboration to occur, such as
:load-file or :interpret. They have the format::

(:output (:ok (:highlight-source POSNS)))

where POSNS is a list of positions to highlight. Each of these is a two-element list whose first element
is a position (encoded as for the source-loc property above) and whose second element is highlighting
metadata in the same format used for output.

6.9 Semantic Highlighting & Pretty Printing

Since v0.9.18 Idris comes with support for semantic highlighting. When using the REPL or IDE support,
Idris will highlight your code accordingly to its meaning within the Idris structure. A precursor to
semantic highlighting support is the pretty printing of definitions to console, LaTeX, or HTML.

The default styling scheme used was inspired by Conor McBride’ s own set of stylings, informally known
as Conor Colours.

6.9.1 Legend

The concepts and their default stylings are as follows:

Idris Term HTML LaTeX IDE/REPL
Bound Variable | Purple Magenta

Keyword Bold Underlined

Function Green Green

Type Blue Blue

Data Red Red

Implicit Italic Purple | Italic Magenta

6.9.2 Pretty Printing

Idris also supports the pretty printing of code to HTML and LaTeX using the commands:
e :pp <latex|html> <width> <function name>

e :pprint <latex|html> <width> <function name>

6.9.3 Customisation

If you are not happy with the colours used, the VIM and Emacs editor support allows for customisation
of the colours. When pretty printing Idris code as LaTeX and HTML, commands and a CSS style are
provided. The colours used by the REPL can be customised through the initialisation script.
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6.9.4 Further Information

Please also see the Idris Extras project for links to editor support, and pre-made style files for LaTeX
and HTML.

6.10 DEPRECATED: Tactics and Theorem Proving

% 45:  The interactive theorem-proving interface documented here has been deprecated in favor of

[Elaborator Reflection]| (éat 199).

Idris supports interactive theorem proving, and the analyse of context through holes. To list all unproven
holes, use the command :m. This will display their qualified names and the expected types. To interac-
tively prove a holes, use the command :p name where name is the hole. Once the proof is complete, the
command :a will append it to the current module.

Once in the interactive prover, the following commands are available:

6.10.1 Basic commands

e :q - Quits the prover (gives up on proving current lemma).
e :abandon - Same as :q
e :state - Displays the current state of the proof.

e :term - Displays the current proof term complete with its yet-to-be-filled holes (is only really useful
for debugging).

e :undo - Undoes the last tactic.

e :ged - Once the interactive theorem prover tells you “No more goals,” you get to type this in
celebration! (Completes the proof and exits the prover)

6.10.2 Commonly Used Tactics

Compute

o compute - Normalises all terms in the goal (note: does not normalise assumptions)

—————————— Goal: it
(Vect (S (8 Z + (82Z) + (Smn))) Nat) -> Vect (8 (8 (8 (8 n)))) Nat
-lemma> compute

—————————— Goal: —————————
(Vect (S (S (S (S n)))) Nat) -> Vect (S (S (S (S mn)))) Nat

-lemma>

Exact

e exact - Provide a term of the goal type directly.
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—————————— Goal: e
Nat

-lemma> exact Z

lemma: No more goals.

-lemma>

Refine

e refine - Use a name to refine the goal. If the name needs arguments, introduce them as new goals.

Trivial

e trivial - Satisfies the goal using an assumption that matches its type.

—————————— Assumptions: —mmmm e

---------- Goal: ittt
Nat

-lemma> trivial

lemma: No more goals.

—-lemma>

Intro

e intro - If your goal is an arrow, turns the left term into an assumption.

—————————— Goal: ittt
Nat -> Nat -> Nat

-lemma> intro

—————————— Assumptions: it
n : Nat

—————————— Goal: —mmmm o
Nat -> Nat

-lemma>

You can also supply your own name for the assumption:

—————————— Goal: bttt
Nat -> Nat -> Nat

-lemma> intro number

—————————— Assumptions: bttt
number Nat

—————————— Goal: e
Nat -> Nat

Intros

e intros - Exactly like intro, but it operates on all left terms at once.

—————————— Goal: bttt
Nat -> Nat -> Nat

-lemma> intros

—————————— Assumptions: it

(8yNeéatezgeam)
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(czndyLéat)

—————————— Goal: ittt

let

e let - Introduces a new assumption; you may use current assumptions to define the new one.

—————————— Assumptions: —m——mm— -
n : Nat
—————————— Goal: i
Biglnt
-lemma> let x = tolntegerNat n
—————————— Assumptions: mmmmmmm -
n : Nat

x = tolIntegerNat n: BigInt
—————————— Goal: mmmmmm e
Biglnt
-lemma>
rewrite

o rewrite - Takes an expression with an equality type (x = y), and replaces all instances of x in the
goal with y. Is often useful in combination with ‘sym’

—————————— Assumptions: e
n : Nat

a : Type

value : Vect Z a

---------- Goal: e

Vect (mult n Z) a
-lemma> rewrite sym (multZeroRightZero n)

---------- Assumptions: ittt
n : Nat

a : Type

value : Vect Z a

—————————— Goal: ittt
Vect Z a

-lemma>

sourcelLocation

e sourcelocation - Solve the current goal with information about the location in the source code
where the tactic was invoked. This is mostly for embedded DSLs and programmer tools like
assertions that need to know where they are called. See Language.Reflection.SourcelLocation
for more information.

6.10.3 Less commonly-used tactics

e applyTactic - Apply a user-defined tactic. This should be a function of type List (TTName,
Binder TT) -> TT -> Tactic, where the first argument represents the proof context and the sec-
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ond represents the goal. If your tactic will produce a proof term directly, use the Exact constructor
from Tactic.

e attack-?

e equiv - Replaces the goal with a new one that is convertible with the old one
o fill-7

e focus-7?

e mrefine - Refining by matching against a type

e reflect-7?

e solve - Takes a guess with the correct type and fills a hole with it, closing a proof obligation. This
happens automatically in the interactive prover, so solve is really only relevant in tactic scripts
used for helping implicit argument resolution.

e try-7?

6.11 The Idris REPL

Idris comes with a REPL.

6.11.1 Evaluation

Being a fully dependently typed language, Idris has two phases where it evaluates things, compile-time
and run-time. At compile-time it will only evaluate things which it knows to be total (i.e. terminating
and covering all possible inputs) in order to keep type checking decidable. The compile-time evaluator
is part of the Idris kernel, and is implemented in Haskell using a HOAS (higher order abstract syntax)
style representation of values. Since everything is known to have a normal form here, the evaluation
strategy doesn’ t actually matter because either way it will get the same answer, and in practice it will
do whatever the Haskell run-time system chooses to do.

The REPL, for convenience, uses the compile-time notion of evaluation. As well as being easier to
implement (because we have the evaluator available) this can be very useful to show how terms evaluate
in the type checker. So you can see the difference between:

Idris> \n, m => (S n) +m
\n => \m => S (plus n m) : Nat -> Nat -> Nat

Idris> \n, m => n + (S m)
\n => \m => plus n (S m) : Nat -> Nat -> Nat

6.11.2 Customisation

Idris supports initialisation scripts.

Initialisation scripts

When the Idris REPL starts up, it will attempt to open the file repl/init in Idris’ s application data direc-
tory. The application data directory is the result of the Haskell function call getAppUserDataDirectory
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"idris", which on most Unix-like systems will return $HOME/ .idris and on various versions of Windows
will return paths such as C:/Documents And Settings/user/Application Data/appName.

The file repl/init is a newline-separate list of REPL commands. Not all commands are supported in
initialisation scripts — only the subset that will not interfere with the normal operation of the REPL.
In particular, setting colours, display options such as showing implicits, and log levels are supported.

Example initialisation script

:colour prompt white italic bold
:colour implicit magenta italic

6.11.3 The REPL Commands

The current set of supported commands are:

Command Arguments Purpose

<expr> Evaluate an expression

't :type <expr> Check the type of an expression

:core <expr> View the core language representation of a term

‘miss :missing <name> Show missing clauses

:doc <name> Show internal documentation

:mkdoc <namespace> Generate IdrisDoc for namespace(s) and dependencies
:apropos <package list>] <name> Search names, types, and documentation

:s :search <package list>]| <expr> Search for values by type

:we :whocalls <name> List the callers of some name

:ew :callswho <name> List the callees of some name

:browse <namespace> List the contents of some namespace

‘total <name> Check the totality of a name

.1 :reload Reload current file

:1 :load <filename> Load a new file

:cd <filename> Change working directory

:module <module> Import an extra module

:e sedit Edit current file using $SEDITOR or $VISUAL

‘m :metavars Show remaining proof obligations (holes)

:p :prove <hole> Prove a hole

:a :addproof <name> Add proof to source file

:rmproof <name> Remove proof from proof stack

:showproof <name> Show proof

:proofs Show available proofs

X <expr> Execute 10 actions resulting from an expression using the interpre
:c :compile <filename> Compile to an executable [codegen]| <filename>

:exec :execute [<expr>] Compile to an executable and run

:dynamic <filename> Dynamically load a C library (similar to %dynamic)
:dynamic List dynamically loaded C libraries

:? :h :help Display this help text

:set, <option> Set an option (errorcontext, showimplicits, originalerrors, autosols
:unset <option> Unset an option

:color :colour <option> Turn REPL colours on or off; set a specific colour
:consolewidth auto|infinite| <number> Set the width of the console

:printerdepth <number-or-blank> Set the maximum pretty-printing depth, or infinite if nothing spe«
:q :quit Exit the Idris system
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Command Arguments Purpose

‘W :warranty Displays warranty information

let (<top-level-declaration>)- Evaluate a declaration, such as a function definition, instance imp
:unlet :undefine | (<name>)-- Remove the listed repl definitions, or all repl definitions if no nam
:printdef <name> Show the definition of a function

:pp :pprint <option> <number> <name> | Pretty prints an Idris function in either LaTeX or HTML and for

6.11.4 Using the REPL

Getting help

The command :help (or :h or :?) prints a short summary of the available commands.

Quitting Idris

If you would like to leave Idris, simply use :q or :quit.

Evaluating expressions

To evaluate an expression, simply type it. If Idris is unable to infer the type, it can be helpful to use
the operator the to manually provide one, as Idris’ s syntax does not allow for direct type annotations.
Examples of the include:

Idris> the Nat 4

4 : Nat
Idris> the Int 4
4 : Int

Idris> the (List Nat) [1,2]
[1,2] : List Nat

Idris> the (Vect _ Nat) [1,2]
[1,2] : Vect 2 Nat

This may not work in cases where the expression still involves ambiguous names. The name can be
disambiguated by using the with keyword:

Idris> sum [1,2,3]
When elaborating an application of function Prelude.Foldable.sum:
Can't disambiguate name: Prelude.lList.::,
Prelude.Stream.::,
Prelude.Vect.::
Idris> with List sum [1,2,3]
6 : Integer

Adding let bindings

To add a let binding to the REPL, use :1let. It’ s likely you’ 1l also need to provide a type annotation.
:1let also works for other declarations as well, such as data.

Idris> :let x : String; x = "hello"
Idris> x
"hello" : String

(8yNeéatezgeam)
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Idris> :let y = 10
Idris> y
10 : Integer
Idris> :let data Foo : Type where Bar : Foo
Idris> Bar
Bar : Foo

Getting type information

To ask Idris for the type of some expression, use the :t command. Additionally, if used with an overloaded
name, Idris will provide all overloadings and their types. To ask for the type of an infix operator, surround
it in parentheses.

Idris> :t "foo"

"foo" : String

Idris> :t plus

Prelude.Nat.plus : Nat -> Nat -> Nat

Idris> :t (++)

Builtins.++ : String -> String -> String

Prelude.List.++ : (List a) -> (List a) -> List a
Prelude.Vect.++ : (Vect m a) -> (Vect n a) -> Vect (m + n) a
Idris> :t plus 4

plus (Builtins.fromInteger 4) : Nat -> Nat

You can also ask for basic information about interfaces with :doc:

Idris> :doc Monad
Interface Monad

Parameters:
m

Methods:
(>>=) : Monad m =>ma > (a->mb) ->mb

infixl 5
Instances:
Monad id
Monad PrimIO

Monad IO
Monad Maybe

Other documentation is also available from :doc:

Idris> :doc (+)
Prelude.Interfaces.(+) : Num ty => ty -> ty -> ty

infixl 8

The function is Total

Idris> :doc Vect
Data type Prelude.Vect.Vect : Nat -> Type -> Type

(8 Néatezggan)
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Arguments:
Nat
Type

Constructors:

Prelude.Vect.Nil : (a : Type) —-> Vect 0 a

Prelude.Vect.:: : (a : Type) -> (n : Nat) -> a -> (Vect n a) -> Vect (S n) a
infixr 7

Arguments:
a
Vect n a

Idris> :doc Monad
Interface Monad

Parameters:
m

Methods:
(>>=) : Monad m =>ma ->(a->mb) >mb
Also called bind.
infixl 5

The function is Total
join : Monad m => m (m a) > m a
Also called flatten or mu

The function is Total

Implementations:

Monad (IO0' ffi)

Monad Stream

Monad Provider

Monad Elab

Monad PrimIO

Monad Maybe

Monad (Either e)

Monad List

Finding things
The command :apropos searches names, types, and documentation for some string, and prints the
results. For example:

Idris> :apropos eq
egPtr : Ptr -> Ptr -> IO Bool

eqSucc : (left : Nat) -> (right : Nat) -> (left = right) -> S left = S right
S preserves equality
lemma_both_neq : ((x =x') > _|_) > ((y=y") > _|_) > ((x, y) = ', y)) —> _|_

(85Néatezgcan)
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lemma_fst_neq snd_eq : ((x =x') -> _|_) > (y=y') > ((x, y) = &', y)) > _|_
lemma_snd_neq : (x = x) > ((y =y') > _[_) > ((x, y) = (x, y)) -> _|_
lemma_x_eq_xs_neq : (x =y) -> ((xs =ys) > _|_) -> (x :: xs =y :: ys) > _|_
lemma_x_neq xs_eq : ((x =y) => _|_) -> (xs =ys) -> (x :: xs =y :: ys) —> _|_
lemma_x_neq_xs_neq : ((x =y) > _|_) > ((xs =ys) > _|_) > (x :: xs =y :: ys) —> _|_
prim__eqB16 : Bits16 -> Bits16 -> Int
prim__eqB16x8 : Bits16x8 -> Bits16x8 -> Bits16x8
prim__eqgB32 : Bits32 -> Bits32 -> Int
prim__eqB32x4 : Bits32x4 -> Bits32x4 -> Bits32x4
prim__eqB64 : Bits64 -> Bits64 -> Int
prim__eqB64x2 : Bits64x2 -> Bits64x2 -> Bits64x2
prim__eqgB8 : Bits8 -> Bits8 -> Int
prim__eqB8x16 : Bits8x16 -> Bits8x16 -> Bits8x16
prim__eqBigInt : Integer -> Integer -> Int
prim__eqChar : Char -> Char -> Int
prim__eqFloat : Double -> Double -> Int
prim__eqInt : Int -> Int -> Int
prim__eqString : String -> String -> Int
prim__syntactic_eq : (a : Type) —> (b : Type) -> (x : a) -> (y : b) -> Maybe (x = y)
sequence : Traversable t => Applicative f => (t (f a)) > £ (t a)
sequence_ : Foldable t => Applicative f => (t (f a)) -> £ ()

Eq : Type -> Type
The Eq interface defines inequality and equality.
GTE : Nat -> Nat -> Type
Greater than or equal to
LTE : Nat -> Nat -> Type
Proofs that n is less than or equal tom
gte : Nat -> Nat -> Bool
Boolean test than one Nat is greater than or equal to another
(ayNéatczgean)
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lte : Nat -> Nat -> Bool
Boolean test than one Nat is less than or equal to another

ord : Char -> Int
Convert the number to its ASCII equivalent.

replace : (x =y) -> (Px) ->Py
Perform substitution in a term according to some equality.

sym : (1 =r) >r=1
Symmetry of propositional equality

trans : (a=b) > (b=c) >a=c

Transitivity of propositional equality

:search does a type-based search, in the spirit of Hoogle. See [Type-directed search (:search) for more
details. Here is an example:

Idris> :search a -> b -> a

= Prelude.Basics.const : a -> b -> a
Constant function. Ignores its second argument.

= assert_smaller : a -> b -> b
Assert to the totality checker than y is always structurally

smaller than x (which is typically a pattern argument)

> malloc : Int -> a -> a

> Prelude.pow : Num a => a -> Nat -> a

> Prelude.Interfaces.(*) : Num a => a -> a -> a

> Prelude.Interfaces.(+) : Num a => a -> a -> a
(More results)

:search can also look for dependent types:
Idris> :search plus (S n) n = plus n (S n)
< Prelude.Nat.plusSuccRightSucc : (left : Nat) ->

(right : Nat) ->
S (left + right) = left + S right

Loading and reloading ldris code

The command :1 File.idr will load File.idr into the currently-running REPL, and :r will reload the
last file that was loaded.

Totality

All Idris definitions are checked for totality. The command :total <NAME> will display the result of that
check. If a definition is not total, this may be due to an incomplete pattern match. If that is the case,
:missing or :miss will display the missing cases.
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Editing files

The command :e launches your default editor on the current module. After control returns to Idris, the
file is reloaded.

Invoking the compiler

The current module can be compiled to an executable using the command :c <FILENAME> or :compile
<FILENAME>. This command allows to specify codegen, so for example JavaScript can be generated using
:c javascript <FILENAME>. The :exec command will compile the program to a temporary file and
run the resulting executable.

10 actions

Unlike GHCI, the Idris REPL is not inside of an implicit IO monad. This means that a special command
must be used to execute 10 actions. :x tm will execute the IO action tm in an Idris interpreter.

Dynamically loading C libraries

Sometimes, an Idris program will depend on external libraries written in C. In order to use these libraries
from the Idris interpreter, they must first be dynamically loaded. This is achieved through the %dynamic
<LIB> directive in Idris source files or through the :dynamic <LIB> command at the REPL. The current
set of dynamically loaded libraries can be viewed by executing :dynamic with no arguments. These
libraries are available through the Idris FFI in type providers (éat ?77) and :exec.

6.11.5 Colours

Idris terms are available in amazing colour! By default, the Idris REPL uses colour to distinguish between
data constructors, types or type constructors, operators, bound variables, and implicit arguments. This
feature is available on all POSIX-like systems, and there are plans to allow it to work on Windows as
well.

If you do not like the default colours, they can be turned off using the command

:colour off

and, when boredom strikes, they can be re-enabled using the command

:colour on

To modify a colour, use the command

:colour <CATEGORY> <OPTIONS>

where <CATEGORY is one of keyword, boundvar, implicit, function, type, data, or prompt, and is a
space-separated list drawn from the colours and the font options. The available colours are default,
black, yellow, cyan, red, blue, white, green, and magenta. If more than one colour is specified, the
last one takes precedence. The available options are dull and vivid, bold and nobold, italic and
noitalic, underline and nounderline, forming pairs of opposites. The colour default refers to your
terminal” s default colour.

The colours used at startup can be changed using REPL initialisation scripts.
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Colour can be disabled at startup by the -——nocolour command-line option.

6.12 Compilation, Logging, and Reporting

This section provides information about the Idris compilation process, and provides details over how you
can follow the process through logging.

6.12.1 Compilation Process

Idris follows the following compilation process:
1. Parsing
2. Type Checking
1. Elaboration
2. Coverage
3. Unification
4. Totality Checking
5. Erasure
3. Code Generation
1. Defunctionalisation
2. Inlining
3. Resolving variables

4. Code Generation

6.12.2 Type Checking Only

With Idris you can ask it to terminate the compilation process after type checking has completed. This
is achieved through use of either:

e The command line options

— ——check for files

— —-checkpkg for packages
e The REPL command: :check

Use of this option will still result in the generation of the Idris binary .ibc files, and is suitable if you
do not wish to generate code from one of the supported backends.

6.12.3 Reporting Compilation Process

During compilation the reporting of Idris’ progress can be controlled by setting a verbosity level.
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e -V, or alternatively —-verbose and --VO, will report which file Idris is currently type checking.
o —-V1 will additionally report: Parsing, IBC Generation, and Code Generation.

e —-V2 will additionally report: Totality Checking, Universe Checking, and the individual steps prior
to code generation.

By default Idris’ progress reporting is set to quiet--q, or —-quiet.

6.12.4 Logging Internal Operation

For those that develop on the Idris compiler, the internal operation of Idris is captured using a category
based logger. Currently, the logging infrastructure has support for the following categories:

o Parser (parser)

o Elaborator (elab)

o Code generation (codegen)

o FErasure (erasure)

o Coverage Checking (coverage)
o IBC generation (ibc)

These categories are specified using the command-line option: --logging-categories CATS, where
CATS is a quoted colon separated string of the categories you want to see. By default if this option is
not specified all categories are allowed. Sub-categories have yet to be defined but will be in the future,
especially for the elaborator.

Further, the verbosity of logging can be controlled by specifying a logging level between: 1 to 10 using
the command-line option: --log <level>.

e Level 0: Show no logging output. Default level
e Level 1: High level details of the compilation process.

e Level 2: Provides details of the coverage checking, and further details the elaboration process
specifically: Interface, Clauses, Data, Term, and Types,

e Level 3: Provides details of compilation of the IRTS, erasure, parsing, case splitting, and further
details elaboration of: Implementations, Providers, and Values.

e Level 4: Provides further details on: Erasure, Coverage Checking, Case splitting, and elaboration
of clauses.

o Level 5: Provides details on the prover, and further details elaboration (adding declarations) and
compilation of the IRTS.

e Level 6: Further details elaboration and coverage checking.
o Level 7:
o Level 8:
o Level 9:

e Level 10: Further details elaboration.
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6.12.5 Environment Variables

Several paths set by default within the Idris compiler can be overridden through environment variables.
The provided variables are:

e IDRIS (CC Change the C compiler used by the C backend.
e IDRIS CFLAGS Change the C flags passed to the C' compiler.

e TARGET Change the target directory i.e. data dir where Idris installs files when installing using
Cabal/Stack.

e IDRIS LIBRARY PATH Change the location of where installed packages are found/installed.

e IDRIS DOC _PATH Change the location of where generated idrisdoc for packages are installed.

Hf#: In versions of Idris prior to 0.12.3 the environment variables IDRIS LIBRARY PATH and
TARGET were both used to affect the installation of single packages and direct where Idris installed
its data. The meaning of these variables has changed, and command line options are preferred when
changing where individual packages are installed.

The CLI option —ibcsubdir can be used to direct where generated IBC files are placed. However, this
means Idris will install files in a non-standard location separate from the rest of the installed packages.
The CLI option —idrispath <dir> allows you to add a directory to the library search path; this option
can be used multiple times and can be shortened to -7 <dir>. Similary, the —sourcepath <dir> option
can be used to add directories to the source search path. There is no shortened version for this option
as -s is a reserved flag.

Further, Idris also supports options to augment the paths used, and pass options to the code generator
backend. The option —cg-opt <ARG> can be used to pass options to the code generator. The format of
<ARG> is dependent on the selected backend.

6.13 Idris’ Internals

Note: this is still a fairly raw set of notes taken by David Christiansen at Edwin’ s presentation at
the 2013 Idris Developers Meeting. They’ re in the process of turning into a useful guide - feel free to
contribute.

This document assumes that you are already familiar with Idris. It is intended for those who want to
work on the internals.

People looking to develop new back ends may want to look at [[Idris back end IRs|Idris-back-end-IRs]]

6.13.1 Core/TT.hs

Idris is compiled to a simple, explicit core language. This core language is called TT because it looks a
bit like a II. It s a minimal language, with a locally nameless representation. That is, local variables
are represented with de Bruijn indices and globally-defined constants are represented with names.

The TT datatype uses a trick that is common in the Idris code: it is polymorphic over the type of names
stored in it, and it derives Functor. This allows fmap to be used as a general-purpose traversal.

There is a general construction for binders, used for A, II, and let-bindings. These are distinguished
using a BinderType.
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During compilation, some terms (especially types) will be erased. This is represented using the Erased
constructor of TT. A handy trick when generating TT terms is to insert Erased where a term is uniquely
determined, as the typechecker will fill it out.

The constructor Proj is a result of the optimizer. It is used to extract a specific constructor argument,
in a more economical way than defining a new pattern-matching operation.

The datatype Raw represents terms that have not yet been typechecked. The typechecker converts a Raw
to a TT if it can.

6.13.2 Core/CaseTree.hs

Case trees are used to represent top-level pattern-matching definitions in the TT language.

Just as with the TT datatype, the deriving Functor trick is used with SC and CaseAlt to get GHC to
generate a function for mapping over contained terms.

Constructor cases (ConCase in CaseAlt) refer to numbered constructors. Every constructor is numbered
0,1,2,--. At this stage in the compiler, the tags are datatype-local. After defunctionalization, however,
they are made globally unique.

The n+1 patterns (SucCase) and hacky-seeming things are to make code fast — please ask before
“cleaning up” the representation.

6.13.3 Core/Evaluate.hs

This module contains the main evaluator for Idris. The evaluator is used both at the REPL and during
type checking, where normalised terms need to be compared for equality.

A key datatype in the evaluator is a context. Contexts are mappings from global names to their values,
but they are organized to make type-directed disambiguation quick. In particular, the main part of a
name that a user might type is used as the key, and its values are maps from namespaces to actual
values.

The datatype Def represents a definition in the global context. All global names map to this structure.
Type and Term are both synonyms for TT.

Datatypes are represented by a TyDecl with the appropriate NameType. A Function is a global constant
term with an annotated type, Operator represents primitives implemented in Haskell, and CaseOp rep-
resents ordinary pattern-matching definitions. CaseOp has four versions for different purposes, and all
are saved because that’ s easiest.

CaselInfo: the tc_dictionary is because it’ s a type class dictionary which makes totality checking
easier.

The normalisex functions give different behaviors - but normalise is the most common.
normaliseC - “resolved” means with names converted to de Bruijn indices as appropriate.
normaliseAll - reduce everything, even if it’ s non-total

normaliseTrace - special-purpose for debugging

simplify - reduce the things that are small - the list argument is the things to not reduce.
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6.13.4 Core/Typecheck.hs

Standard stuff. Hopefully no changes are necessary.

6.13.5 Core/Elaborate.hs

Idris definitions are elaborated one by one and turned into the corresponding T'T. This is done with a
tactic language as an EDSL in the Elab monad (or Elab’ when there’ s a custom state).

Lots of plumbing for errors.
All elaboration is relative to a global context.
The string in the pair returned by elaborate is log information.

See JFP paper, but the names don’ t necessarily map to each other. The paper is the “idealized
version” without logging, additional state, etc.

All the tactics take Raws, typechecking happens there.
claim (x : t) assumes a new x : t.
PLEASE TIDY THINGS UP!

proofSearch flag to try’ is whether the failure came from a human (so fail) or from a machine (so
continue)

Idris-level syntax for providing alternatives explicitly: (| x, y, z |) try X, y, z in order, and take the first
that succeeds.

6.13.6 Core/ProofState.hs

6.13.7 Core/Unify.hs

Deals with unification. Unification can reply with: - this works - this can never work - this will work if
these other unification problems work out (eg unifying f x with 1)

match_ unify: same thing as unification except it’ s just matching name against name, term against
term. x + y matches to 0 + y with x = 0. Used for <== syntax as well as type class resolution.

6.13.8 Idris/AbsSyntaxTree.hs

PTerm is the datatype of Idris syntax. P is for Program. Each PTerm turns into a T'T term by applying
a series of tactics.

IState is the major interpreter state. The global context is the tt_ ctxt field.

Ctxt maps possibly ambiguous names to their referents.

6.13.9 Idris/ElabDecls.hs

This is where the actual elaboration from PTerm to TT happens.
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6.13.10 Idris/ElabTerm.hs

build is the function that creates a Raw. All the “junk” is to deal with things like metavars and so
forth. It has to remember what names are still to be defined, and it doesn’ t yet know the type (filled
in by unificaiton later). Also case expressions have to turn into top-level functions.

resolveTC is type class resolution.

6.14 Core Language Features

Full-spectrum dependent types
Strict evaluation (plus Lazy : Type -> Type type constructor for explicit laziness)
Lambda, Pi (forall), Let bindings
Pattern matching definitions
Export modifiers public, abstract, private
Function options partial, total
where clauses
“magic with”
Implicit arguments (in top level types)
“Bound” implicit arguments {n : Nat} -> {a : Type} -> Vect n a

“Unbound” implicit arguments — Vect n a is equivalent to the above in a type, n and a are
implicitly bound. This applies to names beginning with a lower case letter in an argument position.

‘Tactic’ implicit arguments, which are solved by running a tactic script or giving a default
argument, rather than by unification.

Unit type (), empty type Void

Tuples (desugaring to nested pairs)

Dependent pair syntax (x : T ** P x) (there exists an x of type T such that P x)
Inline case expressions

Heterogeneous equality

do notation

Idiom brackets

Interfaces (like type classes), supporting default methods and dependencies between methods
rewrite prf in expr

Metavariables

Inline proof/tactic scripts

Implicit coercion
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e codata

e Also Inf : Type —-> Type type constructor for mixed data/codata. In fact codata is imple-
mented by putting recursive arguments under Inf.

e syntax rules for defining pattern and term syntactic sugar

o these are used in the standard library to define if ... then ... else expressions and an Agda-
style preorder reasoning syntax.

o |Uniqueness typing| using the UniqueType universe.

o |Partial evaluation by %static argument annotations.
e Error message reflection

o Eliminators

e Label types 'name

e %logging n

e JunifyLog

6.15 Language Extensions

6.15.1 Type Providers

Idris type providers are a way to get the type system to reflect observations about the world outside of
Idris. Similarly to F# type providers, they cause effectful computations to run during type checking,
returning information that the type checker can use when checking the rest of the program. While
F# type providers are based on code generation, Idris type providers use only the ordinary execution
semantics of Idris to generate the information.

A type provider is simply a term of type I0 (Provider t), where Provider is a data type with con-
structors for a successful result and an error. The type t can be either Type (the type of types) or a
concrete type. Then, a type provider p is invoked using the syntax %provide (x : t) with p. When
the type checker encounters this line, the IO action p is executed. Then, the resulting term is extracted
from the IO monad. If it is Provide y for some y : t, then x is bound to y for the remainder of
typechecking and in the compiled code. If execution fails, a generic error is reported and type checking
terminates. If the resulting term is Error e for some string e, then type checking fails and the error e
is reported to the user.

Example Idris type providers can be seen at this repository. More detailed descriptions are available in
David Christiansen” s WGP ‘13 paper and M.Sc. thesis.

6.16 Elaborator Reflection

The Idris elaborator is responsible for converting high-level Idris code into the core language. It is
implemented as a kind of embedded tactic language in Haskell, where tactic scripts are written in an
elaboration monad that provides error handling and a proof state. For details, see Edwin Brady’ s 2013
paper in the Journal of Functional Programming,

Elaborator reflection makes the elaboration type as well as a selection of its tactics available to Idris
code. This means that metaprograms written in Idris can have complete control over the elaboration
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process, generating arbitrary code, and they have access to all of the facilities available in the elaborator,
such as higher-order unification, type checking, and emitting auxiliary definitions.

6.16.1 The Elaborator State

The elaborator state contains information about the ongoing elaboration process. In particular, it con-
tains a goal type, which is to be filled by an under-construction proof term. The proof term can contain
holes, each of which has a scope in which it is valid and a type. Some holes may additionally contain
guesses, which can be substituted in the scope of the hole. The holes are tracked in a hole queue, and
one of them is focused. In addition to the goal type, proof term, and holes, the elaborator state contains
a collection of unsolved unification problems that can affect elaboration.

The elaborator state is not directly available to Idris programs. Instead, it is modified through the use
of tactics, which are operations that affect the elaborator state. A tactic that returns a value of type a,
potentially modifying the elaborator state, has type Elab a. The default tactics are all in the namespace
Language.Reflection.Elab.Tactics.

6.16.2 Running Elaborator Scripts

On their own, tactics have no effect. The meta-operation J%runElab script runs script in the current
elaboration context. Before you can use %runElab, you will have to enable the language extension
by adding %language ElabReflection in your file (or by passing -X ElabReflection to the idris
executable from your command line). For example, the following script constructs the identity function
at type Nat:

idNat : Nat -> Nat

idNat = %runElab (do intro ~{{x}}
£i1ll (Var ~{{x}})
solve)

On the right-hand side, the Idris elaborator has the goal Nat -> Nat. When it encounters the %runElab
directive, it fulfills this goal by running the provided script. The first tactic, intro, constructs a lambda
that binds the name x. The name argument is optional because a default name can be taken from the
function type. Now, the proof term is of the form \x : Nat => {hole}. The second tactic, £i11, fills
this hole with a guess, giving the term \x : Nat => {hole=x}. Finally, the solve tactic instantiates
the guess, giving the result \x : Nat => x.

Because elaborator scripts are ordinary Idris expressions, it is also possible to use them in multiple
contexts. Note that there is nothing Nat-specific about the above script. We can generate identity
functions at any concrete type using the same script:

mkId : Elab ()

mkId = do intro ~{{x}}
£ill (Var ~{{x}})
solve

idNat : Nat -> Nat
idNat = %runElab mkId

idUnit : O -> O
idUnit = %runElab mkId

idString : String -> String
idString = %runElab mkId
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6.16.3 Interactively Building Elab Scripts

You can build an Elab script interactively at the REPL. Use the command :metavars, or :m for short,
to list the available holes. Then, issue the :elab <hole> command at the REPL to enter the elaboration
shell.

At the shell, you can enter proof tactics to alter the proof state. You can view the system-provided
tactics prior to entering the shell by issuing the REPL command :browse Language.Reflection.Elab.
Tactics. When you have discharged all goals, you can complete the proof using the :qed command and
receive in return an elaboration script that fills the hole.

The interactive elaboration shell accepts a limited number of commands, including a subset of the
commands understood by the normal Idris REPL as well as some elaboration-specific commands. It
also supports the do-syntax, meaning you can write res <- command to bind the result of command to
variable res.

General-purpose commands:
e :eval <EXPR>, or :e <EXPR> for short, evaluates the provided expression and prints the result.
e :type <EXPR>, or :t <EXPR> for short, prints the provided expression together with its type.
e :search <TYPE> searches for definitions having the provided type.
e :doc <NAME> searches for definitions with the provided name and prints their documentation.
Commands for viewing the proof state:

e :state displays the current state of the term being constructed. It lists both other goals and the
current goal.

e :term displays the current proof term as well as its yet-to-be-filled holes.
Commands for manipulating the proof state:

o :undo undoes the effects of the last tactic.

e :abandon gives up on proving the current lemma and quits the elaboration shell.

e :qed finishes the script and exits the elaboration shell. The shell will only accept this command
once it reports, “No more goals.” On exit, it will print out the finished elaboration script for you
to copy into your program.

6.16.4 Failure

Some tactics may fail. For example, intro will fail if the focused hole does not have a function type,
solve will fail if the current hole does not contain a guess, and £i11 will fail if the term to be filled in
has the wrong type. Scripts can also fail explicitly using the fail tactic.

To account for failure, there is an Alternative implementation for Elab. The <|> operator first tries
the script to its left. If that script fails, any changes that it made to the state are undone and the right
argument is executed. If the first argument succeeds, then the second argument is not executed.

6.16.5 Querying the Elaboration State

Elab includes operations to query the elaboration state, allowing scripts to use information about their
environment to steer the elaboration process. The ordinary Idris bind syntax can be used to propagate
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this information. For example, a tactic that solves the current goal when it is the unit type might look
like this:

triv : Elab ()
triv = do compute
g <- getGoal
case (snd g) of
(O : Type) => do £fill ~((O) : ()
solve
otherGoal => fail [ TermPart otherGoal
, TextPart "is not trivial"

]

The tactic compute normalises the type of its goal with respect to the current context. While not strictly
necessary, this allows triv to be used in contexts where the triviality of the goal is not immediately
apparent. Then, getGoal is used, and its result is bound to g. Because it returns a pair consisting of
the current goal’ s name and type, we case-split on its second projection. If the goal type turns out to
have been the unit type, we fill using the unit constructor and solve the goal. Otherwise, we fail with an
error message informing the user that the current goal is not trivial.

Additionally, the elaboration state can be dumped into an error message with the debug tactic. A
variant, debugMessage, allows arbitrary messages to be included with the state, allowing for a kind of

“printf debugging” of elaboration scripts. The message format used by debugMessage is the same for
errors produced by the error reflection mechanism, allowing the re-use of the Idris pretty-printer when
rendering messages.

6.16.6 Changing the Global Context

Elab scripts can modify the global context during execution. Just as the Idris elaborator produces auxil-
iary definitions to implement features such as where-blocks and case expressions, user elaboration scripts
may need to define functions. Furthermore, this allows Elab reflection to be used to implement features
such as interface deriving. The operations declareType, defineFunction, and addImplementation
allow Elab scripts to modify the global context.

6.16.7 Using Idris’ s Features

The Idris compiler has a number of ways to automate the construction of terms. On its own, the Elab
state and its interactions with the unifier allow implicits to be solved using unification. Additional
operations use further features of Idris. In particular, resolveTC solves the current goal using interface
resolution, search invokes the proof search mechanism, and sourceLocation finds the context in the
original file at which the elaboration script is invoked.

6.16.8 Recursive Elaboration

The elaboration mechanism can be invoked recursively using the runElab tactic. This tactic takes a goal
type and an elaboration script as arguments and runs the script in a fresh lexical environment to create
an inhabitant of the provided goal type. This is primarily useful for code generation, particularly for
generating pattern-matching clauses, where variable scope needs to be one that isn’ t the present local
context.
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6.16.9 Learn More

While this documentation is still incomplete, elaboration reflection works in Idris today. As you wait
for the completion of the documentation, the list of built-in tactics can be obtained using the :browse
command in an Idris REPL or the corresponding feature in one of the graphical IDE clients to explore
the Language .Reflection.Elab.Tactics namespace. All of the built-in tactics contain documentation
strings.

6.17 Type Directed Search :search

Idris’ :search command searches for terms according to their approximate type signature (much like
Hoogle for Haskell). For example:

Idris> :search e -> List e -> List e
= Prelude.List.(::) : a -> List a -> List a
Cons cell

= Prelude.List.intersperse : a -> List a -> List a
Insert some separator between the elements of a list.

> Prelude.List.delete : Eq a => a -> List a -> List a

< assert_smaller : a -> b -> b
Assert to the totality checker than y is always structurally
smaller than x (which is typically a pattern argument)

< Prelude.Basics.const : a -> b -> a
Constant function. Ignores its second argument.

The best results are listed first. As we can see, (::) and intersperse are exact matches; the = symbol
to the left of those results tells us the types of (::) and intersperse are effectively the same as the
type that was searched.

The next result is delete, whose type is more specific than the type that was searched; that’ s indicated
by the > symbol. If we had a function with the signature e -> List e -> List e, we could have given
it the type Eq a => a -> List a -> List a, but not necessarily the other way around.

The final two results, assert_smaller and const, have types more general than the type that was
searched, and so they have < symbols to their left. For example, e -> List e -> List e would be a
valid type for assert_smaller. The correspondence for const is more complicated than any of the four
previous results. :search shows this result because we could change the order of the arguments! That
is, the following definition would be legal:

f : e -> List e —> List e
f x xs = const xs x

6.17.1 About :search results

:search’ s functionality is based on the notion of type isomorphism. Informally, two types are isomorphic
if we can identify terms of one type exactly with terms of the other. For example, we can consider the
types Nat -> a -> List a and a -> Nat -> List a to be isomorphic, because if we have £ : Nat
-> a -> List a,thenflip f : a -> Nat -> List a. Similarly,ifg : a -> Nat -> List a, then
flip g : Nat -> a -> List a.

With :search, we create a partial order on types; that is, given two types A and B, we may choose to say
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that A <= B, A >= B, or both (in which case we say A == B), or neither. For :search, we say that A >=
B if all of the terms inhabiting A correspond to terms of B, but it need not necessarily be the case that
all the terms of B correspond to terms of A. Here’ s an example:

a -> a >= Nat -> Nat

The left-hand type has just a single inhabitant, id, which corresponds to the term id {a = Nat}, which
has the right-hand type. However, there are various terms inhabiting the right-hand type (such as 8)
which cannot correspond with terms of type a -> a.

We can consider the partial order for :search to be, in some sense, inductively generated by several
classes of “edits” which are described below.

Possible edits

Here is a simple approximate list of the edits that are possible in :search. They are not entirely formal,
and do not necessarily reflect the :search command’ s actual behavior. For example, the argument
application rule may be used directly on arguments that are bound after other arguments, without using
several applications of the argument transposition rule.

e Argument transposition

Score: 1 point

Example:

a -> Vect n a -> Vect (S n) a == Vect n a -> a -> Vect (S n) a

Note that in order for it to make sense to change the order of arguments, neither of the arguments’
types may depend on the value bound by the other argument!

e« Symmetry of equality

Score: 1 point

Example:

(x,y,z : Nat) > x +(y +2) = (x+y) +z

(x,y,2z : Nat) > (x +y) +z=x+ (y + 2)

Note that this rule means that we can flip equalities anywhere they occur (i.e., not only in the return
type).

e Argument application

Score: <= : 3 points, >=: 9 points
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Examples:

a -> a >= Nat -> Nat

a -> a >= List e -> List e
Vect k (Fin k) >= Vect 5 (Fin 5)

Note that the n shown in the scheme above may be 0; that is, there are no Pi terms to be added on the
right side. For example, that’ s the case for the first example shown above. This is probably the most
important, and most widely used, rule of all.

e« Type class application

C : Type -> TypeClass

, yl1:Ti1, ..., yn : Tn |- A : Type, instance : C A
, t : Type |- M : Type
C a => [a/tIM >= (y1 : T1) > ... => (yn : Tn) -> [A/tIM

Score: <= : 4 points, >=: 12 points

Examples
Ord a => a >= Int
Show (List e) => List e -> String >= Show a => List a -> String

This rule is used by looking at the instances for a particular type class. While the scheme is shown only
for single-parameter type classes, it naturally generalizes to multi-parameter type classes. This rule is
particularly useful in conjunction with argument application. Again, note that the n in the scheme above
may be 0.

e« Type class introduction

t : Type |- M : Type C : Type —-> TypeClass

Score: <= : 2 points, >=: 6 points
Example:

a —> a —> Bool >= Eq a => a -> a -> Bool

Scoring and listing search results

When a type S is searched, the type is compared against the types of all of the terms which are currently
in context. When :search compares two types S and T, it essentially tries to find a chain of inequalities

R1 R2 Rn Rn+1
S <=A1<= ... <=An<=T

using the edit rules listed above. It also tries to find chains going the other way (i.e., showing S >= T)
as well. Each rule has an associated score which indicates how drastic of a change the rule corresponds
to. These scores are listed above. Note that for the rules which are not symmetric, the score depends on
the direction in which the rule is used. Finding types which are more general that the searched typed
(8 <= T) is preferred to finding types which are less general.

The score for the entire chain is, at minimum, the sum of the scores of the individual rules (some non-
linear interactions may be added). The :search function tries to find the chain between S and T which
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results in the lowest score, and this is the score associated to the search result for T.

Search results are listed in order of ascending score. The symbol which is shown along with the search
result reflects the type of the chain which resulted in the minimum score.

6.17.2 Implementation of :search

Practically, naive and undirected application of the rules enumerated above is not possible; not only
is this obviously inefficient, but the two application rules (particularly argument application) are really
impossible to use without context given by other types. Therefore, we use a heuristic algorithm that is
meant to be practical, though it might not find ways to relate two types which may actually be related
by the rules listed above.

Suppose we wish to match two types, S and T. We think of the problem as a non-deterministic state
machine. There is a State datatype which keeps track of how well we’ ve matched S and T so far. It
contains:

o Names of argument variables (Pi-bound variables) in either type which have yet to be matched

o A directed acyclic graph (DAG) of arguments (Pi-bindings) for S and T which have yet to be
matched

o A list of typeclass constraints for S and T which have yet to be matched
e A record of the rules which have been used so far to get to this point

A function nextSteps : State -> [State] finds the next states which may follow from a given state.
Some states, where everything has been matched, are considered final. The algorithm can be roughly
broken down into multiple stages; if we start from having two types, S and T, which we wish to match,
they are as follows:

1. For each of S and T, split the types up into their return types and directed acyclic graphs of the
arguments, where there is an edge from argument A to argument B if the term bound in A appears
in the type of B. The topological sorts of the DAG represent all the possible ways in which the
arguments may be permuted.

2. For type T, recursively find (saturated) uses of the = type constructor and produce a list of modified
versions of T containing all possible flips of the = constructor (this corresponds to the symmetry of
equality rule).

3. For each modified type for T, try to unify the return type of the modified T with S, considering
arguments from both S and T to be holes, so that the unifier may match pieces of the two types. For
each modified version of T where this succeeds, an initial State can be made. The arguments and
typeclasses are updated accordingly with the results of unification. The remainder of the algorithm
involves applying nextSteps to these states until either no states remain (corresponding to no path
from S to T) or a final state is found. nextSteps also has several stages:

4. Try to unify arguments of S with arguments of T, much like is done with the return types. We work

“backwards” through the arguments: we try matching all remaining arguments of S which lack

outgoing edges in the DAG of remaining arguments (that is, the bound value doesn’ t appear in

the type of any other remaining arguments) with the all of the corresponding remaining arguments

of T. This is done recursively until no arguments remain for both S and T; otherwise, we give up

at this point. This step corresponds to application of the argument application rule, as well as the
argument transposition rule.

5. Now, we try to match the type classes. First, we take all possible subsets of type class constraints
for S and T. So if S and T have a total of n type class constraints, this produces 2°n states for
every state, and this quickly becomes infeasible as n grows large. This is probably the biggest
bottleneck of the algorithm at the moment. This step corresponds to applications of the type class
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introduction rule.

6. Try to match type class constraints for S with those for T. We attempt to unify each type class
constraint for S with each constraint for T. This may result in applications of the type class appli-
cation rule. Once we are unable to match any more type class constraints between S and T, we
proceed to the final step.

7. Try instantiating type classes with their instances (in either S or T). This corresponds to applications
of the type class application rule. After instantiating a type class, we hopefully open up more
opportunities to match typeclass constraints of S with those of T, so we return to the previous
step.

The code for :search is located in the Idris. TypeSearch module.

Aggregating results

The search for chains of rules/edits which relate two types can be viewed as a shortest path problem
where nodes correspond to types and edges correspond to rules relating two types. The weights or
distances on each edge correspond to the score of each rule. We then may imagine that we have a single
start node, our search type S, and several final nodes: all of the types for terms which are currently in
context. The problem, then, is to find the shortest paths (where they exist) to all of the final nodes. In
particular, we wish to find the “closest” types (those with the minimum score) first, as we’ d like to
display them first.

This problem nicely maps to usage of Dijkstra’ s algorithm. We search for all types simultaneously
so we can find the closest ones with the minimum amount of work. In practice, this results in using a
priority queue of priority queues. We first ask “which goal type should we work on next?” ;| and then
ask “which state should we expand upon next?” By using this strategy, the best results can be shown
quickly, even if it takes a bit of time to find worse results (or at least rule them out).

6.17.3 Miscellaneous Notes

Whether arguments are explicit or implicit does not affect search results.

6.18 Static Arguments and Partial Evaluation
As of version 0.9.15, Idris has support for partial evaluation of statically known arguments. This involves
creating specialised versions of functions with arguments annotated as %static.

(This is an implementation of the partial evaluator described in this ICFP 2010 paper. Please refer to
this for more precise definitions of what follows.)

Partial evaluation is switched off by default since Idris 1.0. It can be enabled with the —-partial-eval
flag.

6.18.1 Introductory Example

Consider the power function over natural numbers, defined as follows (we’ 1l call it my_pow since pow
already exists in the Prelude):
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my_pow : Nat -> Nat -> Nat
my_pow x Z = 1
my_pow x (S k) = mult x (my_pow x k)

This is implemented by recursion on the second argument, and we can evaluate the definition further
if the second argument is known, even if the first isn’ t. For example, we can build a function at the
REPL to cube a number as follows:

*pow> \x => my_pow x 3

\x => mult x (mult x (mult x 1)) : Nat -> Nat
*pow> it 3

27 : Nat

Note that in the resulting function the recursion has been eliminated, since my_pow is implemented by
recursion on the known argument. We have no such luck if the first argument is known and the second
isn’ t:

*pow> \x => my_pow 2 x
\x => my_pow 2 x : Nat -> Nat

Now, consider the following definition which calculates x™2 + 1:

powFn : Nat -> Nat
powFn x = plus (my_pow x (S (S 2))) (S 2)

Since the second argument to my_pow here is statically known, it seems a shame to have to make the
recursive calls every time. However, Idris will not in general inline recursive definitions, in particular
since they may diverge or duplicate work without some deeper analysis.

We can, however, give Idris some hints that here we really would like to create a specialised version of
my_pow.

Automatic specialisation of pow

The trick is to mark the statically known arguments with the %static flag:

my_pow : Nat -> Ystatic Nat -> Nat
my_pow k Z = 1
my_pow k (S j) = mult k (my_pow k j)

When an argument is annotated in this way, Idris will try to create a specialised version whenever it
accounts a call with a concrete value (i.e. a constant, constructor form, or globally defined function) in
a %static position. If my_pow is defined this way, and powFn defined as above, we can see the effect by
typing :printdef powFn at the REPL:

*pow> :printdef powFn
powFn : Nat -> Nat
powFn x = plus (PE_my_pow_3f3eb5ad8 x) 1

What is this mysterious PE_my_pow_3f3e5ad8? It’ s a specialised power function where the statically
known argument has been specialised away. The name is generated from a hash of the specialised
arguments, and we can see its definition with :printdef too:

*petest> :printdef PE_my_pow_3f3ebad8
PE_my_pow_3f3e5ad8 : Nat -> Nat
PE_my_pow_3f3e5ad8 (Oarg) = mult (Oarg) (mult (Oarg) (PE_fromInteger_7bad9767f 1))
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The (Oarg) is an internal argument name (programmers can’ t give variable names beginning with a
digit after all). Notice also that there is a specialised version of fromInteger for Nats, since type class
dictionaries are themselves a particularly common case of statically known arguments!

6.18.2 Specialising Type Classes

Type class dictionaries are very often statically known, so Idris automatically marks any type class
constraint as %static and builds specialised versions of top level functions where the class is instantiated.
For example, given:

calc : Int -> Int
calc x = (x * x) + x

If we print this definition, we’ 1l see a specialised version of + is used:

*petest> :printdef calc
calc : Int -> Int
calc x = PE_+_954510b4 (PE_*_954510b4 x x) x

More interestingly, consider vadd which adds corresponding elements in a vector of anything numeric:

vadd : Num a => Vect n a -> Vect n a -> Vect n a
vadd [1 [0 = [
vadd (x :: xs) (y :: ys) =x +y :: vadd xs ys

If we use this on something concrete as follows: -

test : List Int -> List Int
test xs = let xs' = fromList xs in
toList $ vadd xs' xs'

~-then in fact, we get a specialised version of vadd in the definition of test, and indeed the specialised
version of toList:

test : List Int -> List Int
test xs = let xs' = fromList xs
in PE_toList_888ae67 (PE_vadd_33f98d3d xs' xs')

Here’ s the specialised version of vadd:

PE_vadd_33f98d3d : Vect n Int -> Vect n Int -> Vect n Int

PE_vadd_33£98d3d [] [] = []

PE_vadd_33f98d3d (x :: xs) (y :: ys) = ((PE_+_954510b4 x y)
(PE_vadd_33f98d3d xs ys))

Note that the recursive structure has been preserved, and the recursive call to vadd has been replaced
with a recursive call to the specialised version. We’ ve also got the same specialised version of + that
we had above in calc.

6.18.3 Specialising Higher Order Functions

Another case where partial evaluation can be useful is in automatically making specialised versions of
higher order functions. Unlike type class dictionaries, this is not done automatically, but we might
consider writing map as follows:
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my_map : %static (a -> b) -> List a -> List b
my_map £ []1 = []
my map £ (x :: xs) = f x :: my_map f xs

Then using my_map will yield specialised versions, for example to double every value in a list of Ints we
could write:

doubleAll : List Int -> List Int
doubleAll xs = my_map (*2) xs

This would yield a specialised version of my_map, used in doubleAll as follows:

doubleAll : List Int -> List Int
doubleAll xs = PE_my_map_1£8225c4 xs

PE_my_map_1£8225c4 : List Int -> List Int
PE_my_map_1£8225c4 []1 = []
PE_my_map_1£8225c4 (x :: xs) = ((PE_*_954510b4 x 2) :: (PE_my_map_1£8225c4 xs))

6.18.4 Specialising Interpreters

A particularly useful situation where partial evaluation becomes effective is in defining an interpreter for
a well-typed expression language, defined as follows (see the Idris tutorial, section 4| for more details on
how this works):

data Expr : Vect n Ty -> Ty -> Type where
Var : HasType i gamma t -> Expr gamma t
Val : (x : Int) -> Expr gamma TyInt
Lam : Expr (a :: gamma) t -> Expr gamma (TyFun a t)
App : Lazy (Expr gamma (TyFun a t)) -> Expr gamma a -> Expr gamma t

Op : (interpTy a -> interpTy b -> interpTy c) -> Expr gamma a -> Expr gamma
Expr gamma c
If : Expr gamma TyBool -> Expr gamma a -> Expr gamma a -> Expr gamma a
dsl expr

lambda = Lam
variable = Var
index_first = stop
index_next = pop

We can write a couple of test functions in this language as follows, using the dsl notation to overload
lambdas; first a function which multiplies two inputs:

eMult : Expr gamma (TyFun TyInt (TyFun TyInt TyInt))

eMult = expr (\x, y => Op (*) x y)

Then, a function which calculates the factorial of its input:

eFac : Expr gamma (TyFun TyInt TyInt)
eFac = expr (\x => If (Op (==) x (Val 0))
(Val 1)
(App (App eMult (App eFac (Op (-) x (Val 1)))) x))

The interpreter’ s type is written as follows, marking the expression to be evaluated as %static:

interp : (env : Env gamma) -> Jstatic (e : Expr gamma t) -> interpTy t

This means that if we write an Idris program to calculate a factorial by calling interp on eFac, the
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resulting definition will be specialised, partially evaluating away the interpreter:

runFac : Int -> Int
runFac x = interp [] eFac x

We can see that the call to interp has been partially evaluated away as follows:

*interp> :printdef runFac
runFac : Int -> Int
runFac x = PE_interp_ed1429%e [] x

If we look at PE_interp_ed1429e we’ 1l see that it follows exactly the structur of eFac, with the
interpreter evaluated away:

*interp> :printdef PE_interp_ed1429e
PE_interp_ed1429e : Env gamma -> Int -> Int
PE_interp_ed1429e (3arg) = \x =>
boolElim (x == 0)
(Delay 1)
(Delay (PE_interp_b5c2d0ff (x :: (3arg))
(PE_interp_ed1429e (x ::

—(Barg)) (x - 1)) x))

For the sake of readability, I have simplified this slightly: what you will really see also includes specialised
versions of ==, - and fromInteger. Note that PE_interp_ed1429e, which represents eFac has become
a recursive function following the structure of eFac. There is also a call to PE_interp_b5c2d0ff which
is a specialised interpeter for eMult.

These definitions arise because the partial evaluator will only specialise a definition by a specific concrete
argument once, then it is cached for future use. So any future applications of interp on eFac will also
be translated to PE_interp_ed1429e.

The specialised version of eMult, without any simplification for readability, is:

PE_interp_b5c2d0ff : Env gamma -> Int -> Int -> Int
PE_interp_b5c2d0ff (3arg) = \x => \xl1 => PE_x_954510b4 x x1

6.19 Miscellaneous

Things we have yet to classify, or are two small to justify their own page.

6.19.1 The Unifier Log

If you’ re having a hard time debugging why the unifier won’ t accept something (often while debugging
the compiler itself), try applying the special operator %unifyLog to the expression in question. This will
cause the type checker to spit out all sorts of informative messages.

6.19.2 Namespaces and type-directed disambiguation

Names can be defined in separate namespaces, and disambiguated by type. An expression with NAME
EXPR will privilege the namespace NAME in the expression EXPR. For example:
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Idris> with List [[1,21,[3,4],[5,6]]
[[1, 21, [3, 41, [5, 6]1]1 : List (List Integer)

Idris> with Vect [[1,2],[3,4],[5,6]]
[[1, 21, [3, 41, [5, 6]1] : Vect 3 (Vect 2 Integer)

Idris> [[1,2],(3,4],[5,6]]
Can't disambiguate name: Prelude.List.::, Prelude.Stream.::, Prelude.Vect.::

6.19.3 Alternatives

The syntax (| optionl, option2, option3, ... |) type checks each of the options in turn until one
of them works. This is used, for example, when translating integer literals.

Idris> the Nat (| "foo", Z, (-3) |)
0 : Nat

This can also be used to give simple automated proofs, for example: trying some constructors of proofs.

syntax Trivial = (| Oh, Refl |)

6.19.4 Totality checking assertions

All definitions are checked for coverage (i.e. all well-typed applications are handled) and either for
termination (i.e. all well-typed applications will eventually produce an answer) or, if returning codata,
for productivity (in practice, all recursive calls are constructor guarded).

Obviously, termination checking is undecidable. In practice, the termination checker looks for size change
- every cycle of recursive calls must have a decreasing argument, such as a recursive argument of a strictly
positive data type.

There are two built-in functions which can be used to give the totality checker a hint:

e assert_total x asserts that the expression x is terminating and covering, even if the totality
checker cannot tell. This can be used for example if x uses a function which does not cover all
inputs, but the caller knows that the specific input is covered.

o assert_smaller p x asserts that the expression x is structurally smaller than the pattern p.

For example, the following function is not checked as total:

gsort : Ord a => List a -> List a
gsort [] = []
gsort (x :: xs) = gsort (filter (<= x) xs) ++ (x :: gsort (filter (>= x) xs)))

This is because the checker cannot tell that filter will always produce a value smaller than the pattern
x :: xs for the recursive call to gsort. We can assert that this will always be true as follows:

total
gsort : Ord a => List a -> List a
gsort [1 = []
gsort (x :: xs) = gsort (assert_smaller (x :: xs) (filter (<= x) xs)) ++
(x :: gsort (assert_smaller (x :: xs) (filter (>= x) xs))))
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6.19.5 Preorder reasoning

This syntax is defined in the module Syntax.PreorderReasoning in the base package. It provides a
syntax for composing proofs of reflexive-transitive relations, using overloadable functions called step and
ged. This module also defines step and ged functions allowing the syntax to be used for demonstrating
equality. Here is an example:

import Syntax.PreorderReasoning
multThree : (a, b, ¢ : Nat) -> a * b * ¢c = c * a * b
multThree a b ¢ =

(a2 * b * ¢c) ={ sym (multAssociative a b c) }=

(a * (b * ¢)) ={ cong (multCommutative b c) }=

(a * (c * b)) ={ multAssociative a c b }=

(a * ¢ * b) ={ cong {f = (* b)} (multCommutative a c) }=
(c * a * b) QED

Note that the parentheses are required — only a simple expression can be on the left of ={ }= or QED.
Also, when using preorder reasoning syntax to prove things about equality, remember that you can only
relate the entire expression, not subexpressions. This might occasionally require the use of cong.

Finally, although equality is the most obvious application of preorder reasoning, it can be used for
any reflexive-transitive relation. Something like stepl ={ justl }= step2 ={ just2 }= end QED is
translated to (step stepl justl (step step2 just2 (ged end))), selecting the appropriate defini-
tions of step and ged through the normal disambiguation process. The standard library, for example,
also contains an implementation of preorder reasoning on isomorphisms.

6.19.6 Pattern matching on Implicit Arguments

Pattern matching is only allowed on implicit arguments when they are referred by name, e.g.
foo : {n : Nat} -> Nat

foo {n = Z} = Z

foo {n = Sk} =k

or

foo : {n : Nat} -> Nat

foo {n = n} =n

The latter could be shortened to the following:

foo : {n : Nat} -> Nat

foo {n} = n

That is, {x} behaves like {x=x}.

6.19.7 Existence of an implementation
In order to show that an implementation of some interface is defined for some type, one could use the
%implementation keyword:

foo : Num Nat
foo = Jimplementation
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6.19.8 ‘match’ application
ty <== name applies the function name in such a way that it has the type ty, by matching ty against
the function’ s type. This can be used in proofs, for example:
plus_comm : (n : Nat) -> (m : Nat) -> (n + m = m + n)
-- Base case
(Z +m=m+ Z) <== plus_comm =

rewrite ((m + Z = m) <== plusZeroRightNeutral) ==>

(Z + m =m) in Refl

-- Step case
(Sk+m=m+ S k) <== plus_comm =

rewrite ((k + m = m + k) <== plus_comm) in

rewrite ((8 (m + k) = m + S k) <== plusSuccRightSucc) in
Refl

6.19.9 Reflection

Including %reflection functions and quoteGoal x by fn in t, which applies fn to the expected type
of the current expression, and puts the result in x which is in scope when elaborating t.

6.19.10 Bash Completion

Use of optparse-applicative allows Idris to support Bash completion. You can obtain the completion
script for Idris using the following command:

idris --bash-completion-script “which idris~
To enable completion for the lifetime of your current session, run the following command:

source <(idris --bash-completion-script “which idris~)

To enable completion permanently you must either:
e Modify your bash init script with the above command.

e Add the completion script to the appropriate bash_completion.d/ folder on your machine.
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Tutorials on the Idris Language

Tutorials submitted by community members.

#f#: The documentation for Idris has been published under the Creative Commons CCO License. As
such to the extent possible under law, The Idris Community has waived all copyright and related or
neighboring rights to Documentation for Idris.

More information concerning the CCO can be found online at: |http://creativecommons.org/
publicdomain /zero/1.0/

7.1 Type Providers in Idris

Type providers in Idris| are simple enough, but there are a few caveats to using them that it would be
worthwhile to go through the basic steps. We also go over foreign functions, because these will often be
used with type providers.

7.1.1 The use case

First, let” s talk about why we might want type providers. There are a number of reasons to use them
and there are other examples available around the net, but in this tutorial we’ 1l be using them to port
C’ s struct stat to Idris.

Why do we need type providers? Well, Idris’ s FFI needs to know the types of the things it passes to
and from C, but the fields of a struct stat are implementation-dependent types that cannot be relied
upon. We don’ t just want to hard-code these types into our program--- so we’ 1l use a type provider
to find them at compile time!
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7.1.2 A simple example

First, let” s go over a basic usage of type providers, because foreign functions can be confusing but it s
important to remember that providers themselves are simple.

A type provider is simply an IO action that returns a value of this type:

data Provider a = Provide a | Error String

Looks familiar? Provider is just Either a String, given a slightly more descriptive name.

Remember though, type providers we use in our program must be IO actions. Let’ s write a simple one
now:

module Provider
-- Asks nicely for the user to supply the size of C's size_t type on this
—-= machine
getSizeT : IO (Provider Int)
getSizeT = do
putStrLln "I'm sorry, I don't know how big size_t is. Can you tell me, in bytes?"
resp <- getLine
case readInt resp of
Just sizeTSize => pure (Provide sizeTSize)
Nothing => pure (Error "I'm sorry, I don't understand.")
-- the readInt function ts left as an exzercise

We assume that whoever’ s compiling the library knows the size of size_t, so we’ 1l just ask them!
(Don’ t worry, we’ 11 get it ourselves later.) Then, if their response can be converted to an integer, we
present Provide sizeTSize as the result of our 10 action; or if it can’ t, we signal a failure. (This will
then become a compile-time error.)

Now we can use this IO action as a type provider:

module Main
-- to gain access to the I0 action we're using as a provider
import Provider

-- TypeProviders is an extension, so we'll enable %t
%language TypeProviders

-— And finally, use the provider!
-— Note that the parentheses are mandatory.
%provide (sizeTSize : Int) with getSizeT

-— From now on it's just a normal program where ‘sizelSize  is available
-- as a top-level constant
main : I0 O
main = do
putStr "Look! I figured out how big size_t is! It's "
putStr (show sizeTSize)
putStr " bytes!"

Yay! We--- asked the user something at compile time? That’ s not very good, actually. Our library is
going to be difficult to compile! This is hardly a step up from having them edit in the size of size_t
themselves!

Don’ t worry, there’ s a better way.
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7.1.3 Foreign Functions

It’ s actually pretty easy to write a C function that figures out the size of size_t:

int sizeof_size_t() { return sizeof(size_t); }

(Why an int and not a size_t? The FFI needs to know how to receive the return value of this function
and translate it into an Idris value. If we knew how to do this for values of C type size_t, we wouldn’ t

need to write this function at all! If we really wanted to be safe from overflow, we could use an array of
multiple integers, but the SIZE of size_t is never going to be a 65535 byte integer.)

So now we can get the size of size_t as long as we’ re in C code. We’ d like to be able to use this
from Idris. Can we do this? It turns out we can.

foreign

With foreign, we can turn a C function into an IO action. It works like this:

getSizeT : IO Int
getSizeT = foreign FFI_C "sizeof_size_t" (IO Int)

Pretty simple. foreign takes a specification of what function it needs to call and that function’ s return
type.

Running foreign functions

This is all well and good for writing code that will typecheck. To actually run the code, we’ 1l need
to do just a bit more work. Exactly what we need to do depends on whether we want to interpret or
compile our code.

In the interpreter

If we want to call our foreign functions from interpreted code (such as the REPL or a type provider), we
need to dynamically link a library containing the symbols we need. This is pretty easy to do with the
%dynamic directive:

%dynamic "./filename.so"

Note that the leading “./” isimportant: currently, the string you provide is interpreted as by dlopen(),
which on Unix does not search in the current directory by default. If you use the “./” | the library will
be searched for in the directory from which you run idris (not the location of the file you’ re running!).
Of course, if you’ re using functions from an installed library rather than something you wrote yourself,
the “./” is not necessary.

In an executable
If we want to run our code from an executable, we can statically link instead. We’ 1l use the %include
and %1link directives:

%include C "filename.h"
%link C "filename.o"
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Note the extra argument to the directive! We specify that we’ re linking a C header and library. Also,
unlike %dynamic, these directives search in the current directory by default. (That is, the directory from
which we run idris.)

7.1.4 Putting it all together

So, at the beginning of this article I said we’ d use type providers to port struct stat to Idris. The
relevant part is just translating all the mysterious typedef’ d C types into Idris types, and that’ s what
we’ 1l do here.

First, let’ s write a C file containing functions that we’ 1l bind to.

/* stattypes.c */
#include <sys/stat.h>

int sizeof_dev_t() { return sizeof(dev_t); }
int sizeof_ino_t() { return sizeof(ino_t); }
/* lots more functions like this */

Next, an Idris file to define our providers:

-- Providers.tdr
module Providers

%dynamic "./stattypes.so"
%access export

size0fDevT : IO Int
size0fDevT = foreign FFI_C "sizeof _dev_t" (I0 Int)
{- lots of similar functions -}

-- Indicates how many bits are used to represent wvarious system
-- stat types.

public export

data BitWidth = B8 | B16 | B32 | B64

Show BitWidth where
show B8 = "8 bits"

show B16 = "16 bits"
show B32 = "32 bits"
show B64 = "64 bits"

-= Now we have an integer, but we want a Provider BitWidth.
-- Since our sizelf* functions are ordinary IO actions, we
-- can just map over them.

bytesToType : Int -> Provider BitWidth

bytesToType 1 = Provide B8 -- "8 bit walue”
bytesToType 2 = Provide B16

bytesToType 4 = Provide B32

bytesToType 8 = Provide B64

bytesToType _ = Error "Unrecognised integral type."

getDevT : IO (Provider BitWidth)
getDevT = map bytesToType size0fDevT
{- lots of similar functions -}

Finally, we’ 1l write one more idris file where we use the type providers:

-- Main.idr

(85Néatezgcan)
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module Main
import Providers
%language TypeProviders
J%provide (DevIBitWidth : BitWidth) with getDevT
-- We can now use DevTBitWidth in our program!

main : I0 O
main = putStrLln $ "size of dev_t: " ++ show DevIBitWidth

7.2 The Interactive Theorem Prover

This short guide contributed by a community member illustrates how to prove associativity of addition
on Nat using the interactive theorem prover.

First we define a module Foo.idr

module Foo

plusAssoc : plus n (plus m o) = plus (plus n m) o
plusAssoc = 7rhs

We wish to perform induction on n. First we load the file into the Idris REPL as follows:

$ idris Foo.idr

We will be given the following prompt, in future releases the version string will differ:

/() ___

/1 __ ) ___ ] ___/ Version 0.9.18.1
S/ ) http://www.idris-lang.org/
/__IN__,_/_/ /_[____/ Type :?7 for help

Idris is free software with ABSOLUTELY NO WARRANTY.
For details type :warranty.

Type checking ./Foo.idr

Metavariables: Foo.rhs

*Foo>

7.2.1 Explore the Context

We start the interactive session by asking Idris to prove the hole rhs using the command :p rhs. Idris
by default will show us the initial context. This looks as follows:

—————————— Goal: it
{ hole 0 }:

(n : Nat) ->

(m : Nat) ->

(o : Nat) ->

plus n (plus m o) = plus (plus n m) o
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7.2.2 Application of Intros

We first apply the intros tactic:

-Foo.rhs> intros

---------- Other goals: e
{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —mmmmm -

—————————— Goal: it
{ hole 3 }:
plus n (plus m o) = plus (plus n m) o

7.2.3 Induction on n

Then apply induction on to n:

-Foo.rhs> induction n

—————————— Other goals: e
elim_SO

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —mmmmmm -

—————————— Goal: e
elim_ZO:
plus Z (plus m o) = plus (plus Z m) o

7.2.4 Compute

-Foo.rhs> compute

—————————— Other goals: —mmmm— -
elim_SO

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —mmmm—— -

—————————— Goal: ittt
elim_Z0:
plus m o = plus m o

7.2.5 Trivial

-Foo.rhs> trivial
—————————— Other goals: e

(8yNeéatezgeam)
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{ hole 2 }
{ hole 1 }
{ hole 0 }
—————————— Assumptions: —mmmmm -

—————————— Goal: e
elim_SO:

(n__0 : Nat) ->

(plus n__0 (plus m o) = plus (plus n__O0 m) o) ->

plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

7.2.6 Intros

-Foo.rhs> intros

—————————— Other goals: it
{ hole 4 }

elim_SO

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: it

0 : Nat
ibn__0 : plus n__O (plus m o) = plus (plus n__0 m) o
—————————— Goal: bttt
{ hole 5 }:
plus (S n__0) (plus m o) = plus (plus (S n__0) m) o

7.2.7 Compute

-Foo.rhs> compute

---------- Other goals: —mmmmm -
{ hole 4 }

elim_SO

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —mmmmm -

0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__O0 m) o
—————————— Goal: e
{ hole 5 }:
S (plus n__0 (plus m o)) = S (plus (plus n__0 m) o)
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7.2.8 Rewrite

-Foo.rhs> rewrite ihn__0

---------- Other goals: e
{ hole 5 }

{ hole 4 }

elim_SO

{ hole 2 }

{ hole 1 }

{ hole 0 }

—————————— Assumptions: —mmmmm -

0 : Nat
ihn__0 : plus n__0 (plus m o) = plus (plus n__O m) o
—————————— Goal: ————m
{ hole 6 }:
S (plus n__0 (plus m 0)) = S (plus n__0 (plus m o))

7.2.9 Trivial

-Foo.rhs> trivial
rhs: No more goals.
-Foo.rhs> qged
Proof completed!
Foo.rhs = proof
intros
induction n
compute
trivial
intros
compute
rewrite ihn__0O
trivial

Two goals were created: one for Z and one for S. Here we have proven associativity, and assembled a
tactic based proof script. This proof script can be added to Foo.idr.
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